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1 Summary

A user (human or computer-based speech recognizer) receiving instructions from various
speech sources (human or synthesized) may be overwhelmed when these sources are speaking
simultaneously in an unfavorable acoustical and noisy environment. In such a case, the user
is required to separate the various sources from the mixture in order to make the speech
intelligible. If no one source dominates or the mixing occurs for a sustained period of time,
the human user may become mentally and physically overloaded resulting in fatigue and
thus failing to separate the various speech sources into intelligible signals. In the case of the
speech recognizer, recognition accuracy may be degraded to unacceptable levels.

In this research, we have gained an understanding of the source separation problem for
convolutional mixtures and developed expertise with the Frequency-Domain, Second-Order
Statistics (FDSOS) based blind speech separation (BSS) algorithms. As a starting point, we

- have implemented a recently-developed version called the Multiresolution Frequency-Domain
(MFRD) algorithm and analyzed its performance. We have developed several modifications
to the MRFD algorithm for better performance at reduced cost, implemented it, and evalu-
ated it under a wide set of noise and acoustic environments in both simulated and real-world
tests. Modifications include methods for exploiting frequency-domain symmetries in order
to reduce computation by 50% and initialization strategies for improved performance. We
have experimentally determined optimal parameters for the algorithm and studied the ef-
fects of room size and liveliness on separation performance. Simulations with both digitally-
filtered and mixed speech signals as well as real-world signals indicate good performance

" with this algorithm with 10-20dB improvement to the Signal-to-Interference Ratio (SIR) of

these sources.

In the important case of speech enhancement, i.e. blind suppression of background noise
from a desired speech signal, we have been able to increase Signal-to-Interference Ratio
Improvement (SIRI) upwards of 20dB. This may have significant impact on the problem
of automatic speech recognition in noisy environments. Our work has also demonstrated
a robustness to separating speech signals in the presence of noise. The potential of these
algorithms for real-time processing has been examined and we have concluded that good
performance is possible but with at least a 2sec. delay due to the inherent “block processing”
nature of the algorithm. Finally, we have developed a blind speech signal corpus or database
containing speech signal mixtures in a variety of acoustical environments. This database is
now available on the Internet at

http://www.ece.nmsu.edu/"pdeleon/BSS/index.html

for free download.



2 Introduction

In many audio-interface, multimedia, and speech recognition applications, mixtures of speech
signals from various competing acoustic sources (other speakers and noise) must be separated
out before processing [1]. Given the complicated nature of speech signals (non-stationary,
overlap in time- and frequency-domains, etc...) this is a difficult problem compounded
by environmental effects such as noise and reverberation and a strong desire for a simple
algorithm suitable for real-time operation. Several methods have been proposed some of
which have shown moderate success at various aspects of the problem but often at the
expense of high computational complexity [2],[3].

The basic problem (two channel case) is illustrated in Fig. 1 and described as follows.
Let s;,sy be two unknown source speech signals and z;,7; be two mixture signals each
composed of the sum of the acoustically-filtered (echoed and reverberated) source signals;
the impulse response from source ¢ to microphone j is given by h;;. The problem is this:
given only the received signals (mixtures of filtered speech), z1, o, produce two signals y1, ¥
which approximate the individual source signals. Note we have no information regarding the
original sources or acoustical filters. The “blind” designation denotes the fact we are given
no a prior: information to use in the separation task.

no»
[ 1

?

E\Z E
21
11 22]

S1 52

X1 X2

Figure 1: Block diagram of speech separation problem.

The mixture signals in Fig. 1 can be expressed as a convolution, i.e.,
2 P-1

zi(n) = > hi(p)sin—p),j=1,2 (2.1)

i=1 p=0

where h;;(p) models the P-point impulse response from source ¢ to microphone j. The two
mixture signals in (2.1) can be stacked in vector form and written as

[263] = [t} b ][] o

or simply as,
x(n) = H(n)*s(n), (2.3)

2



where x(n) = [z1(n) z2(n)]7T is the vector of received mixture signals, H(n) is the 2 2 mixing
filter matrix whose elements are hj;, * is the convolution operator, and s(n) = [s;(n) sa(n)]”
is the source signal vector. The aim of the BSS method is to find a 2 x 2 un-mixing filter
matrix, W(n), where each element is of length @, that separates the two sources up to an
arbitrary filter and permutation, i.e.

[ y1(n) ] — [,wu(”) wia(n) } X [ fﬂ.l(”) } | (2.4)

y2(n) wa(n) wa(n) z2(n)
or simply as, .
v(n) = W(n)*x(n), (2.5) |

where y(n) = [y1(n) y2(n)]” is the vector of output signals approximating the original
sources, and W(n) is the 2 x 2 un-mixing filter matrix whose elements are w;;. The “permu-
tation” designation is to express the fact that either permutation y(n) = [y1(n) yo(n)]T or

y(n) = [2(n) 1:1(n)]7 is an acceptable result. The overall block diagram is given in Fig. 2.

Unknown, Acoustical Un-mixing Filters
Filtering (to be built)
Output si
Sou[ce signa]s, # H ﬁ- W # y(u)pu S]gna]s,
s() | VTS <l E— (source signal estimates)

Mixture signals,
x( ) (given)

Figure 2: Block diagram of Blind Speech Separation setting.



3 Methods, Assumptions, and Procedures

3.1 Infroduction

To date, one of the most successful methods for the blind separation of speech signals in
reverberant environments is that recently proposed by Parra and Spence and further im-
proved by lkram and Morgan [3, 4]. Both of these algorithms have their roots in the work
by Cardoso and are based on Frequency-Domain, Second Order Statistics (FDSOS). Here
we attempt to decorrelate the speech signals from one another in the frequency domain,
i.e. diagonalize covariance matrices. Since the original speech signals are nonstationary and
uncorrelated but not independent, decorrelation is enough to theoretically, produce sepa-
rated sources. The methods are frequency-domain-based so that a difficult tlme-domam
deconvolution involving the acoustical filters can be avoided.

3.2 Ffequency—Domain, Second Order Statistics-Based Algorithms

We first begin by transforming the time-domain convolutive mixture vector, x(n) in (2.3)
to a frequency-domain, instantaneous mixture by computing its T-point short-time Fourier
transform (STFT)

[zl(w,m)] _ [Hu(w) Hip(w) ] [Sl(w’m) ] (3.1)

zo(w, m) Hy(w) Hyp(w) || s2(w,m)
or
x(w,m) = H(w)s(w,m) (3.2)

where x(w,m) = [z;(w, m) z2(w,m)]T is the STFT of the mixture signal vector, s(w,m) =
[81(w, m) s3(w, m)]7 is the STFT of the source signal vectors, H(w) is the matrix of acoustical
frequency responses with Hj;(w) the response from source i to microphone j , m is the block
index, and ideally, T = 2P. For a given set of received data, x(n), n = 0,...,N — 1, we
obtain the STFT as

T-1

x(w,m) = Z w(r)x(BTm + 'r)e'ﬂ’"‘”/ T (3.3)

7=0
forw =1,...,T and m = 0,...,N/(ST) — 1, where w(7) is a window function and 3
(0 < B < 1) is the data overlap factor. Fig. 3 illustrates the block structure of STFT and
associated notation. Similarly (2.3) transforms to

[mem] - [l W) [zmem] e

or
yw,m) = W(w)x(w,m) - (3.5)

where y(w,m) = [y1(w, m) yo(w,m)]7 is the STFT of the output signal vector and W (w)
is the matrix of un-mixing filter frequency responses with Wj;(w) the response of the jith

4



xn

Figure 3: Block structure of STFT.

un-mixing filter. We employee the overlap-add method [5] to synthesize the separated time-
domain speech signals as

U-1
y(n) = > §(n—mpT,m), n=0,...,N—-1 (3.6)

m=0

where

T—l

y(r,m) = TZY(“" m)e’z"“”/T 7=0,...,7—1 (3.7)
w=0 .

is the inverse STFT In the synthesis given by (3.6), we have windowed blocks spaced by ﬁT
samples in time and overlapped and added to produce the output signals.

We assume that the source signals are quasi-stationary, i.e. statistics are slowly varying
with time. Thus, we can treat the speech signals as a succession of superblocks of stationary
signals, and analyze their spectrum on a time-varying basis. The assumption of uncorre-
latedness of source signals s;(n) and ss(n) can therefore be represented in the time-domain
by a cross-correlation of zero or in the frequency-domain by a Cross-Power Spectral Density
(CPSD) of zero. The Power Spectral Density (PSD) matrix of source vector, s at frequency
w will then have following diagonal form

" Rs(w, k) = E[s(w,m)sH(w,m)]
= [8( Z] | ' (3.8)

where x is some non-zero value representing either the PSD of s1(n) or s3(n) and k is the

superblock index.
‘ Under the assumption of uncorrelated source signals, we seek to build frequency by

frequency, an un-mixing filter matrix, W(w) that decorrelates the output signals y;(n) and



1y2(n) at each frequency w. Thus when applied to x(w, k), we have a diagonal PSD matrix
for the output signals given by

Ry(w,k) = E[ylw,m)y"(w,m)]
= WW)E [x(w,m)x" (. )] W¥(w)
= W(w)Ry(w, k)WH(w). (3.9)

Here we consider y(n) as the output of a linear shift invariant (LSI) system, W(n) with
quasi-stationary input signals, s(n). The frequency-domain, covariance matrix, Rx(w, k),
can be estimated (also assuming ergodicity in each superblock) with an average of the outer
products of the received signal vectors

M-1
Ry(w,k) = 7‘14- 3 x(w, Mk + m)x* (w, Mk +m), (3.10)
m=0
for k=0,...,K — 1 provided the number of blocks in each superblock, M, is large enough.
Note that in (3.10), the frequency-domain data is averaged over M = N/(KpT), possibly
overlapping, consecutive blocks to obtain the covariance at a super-block index k.

The decorrelation objective is therefore to find a sequence of un-mixing filter matrices,
W (w) which minimizes the CPSD at each frequency or effectively diagonalizes (3.9) as much
as possible for each frequency w and each superblock k. The filters are then applied to
x(w,m) resulting in (hopefully) decorrelated and thus separated output signals.

The second-order decorrelation criterion alone does not provide enough conditions to
solve for W(w), unless the number of outputs is twice the number of inputs (four outputs
~ for the two-input case) [3]. However, for non-stationary signals, we can write independent
decorrelation equations for K sufficiently separated time intervals. As shown in [3], a set of
K equations give a total of KT constraints on the 4Q) unknown coefficients of W(w). In
order to build an over-determined, least-squares problem (from which there will be at least
one solution), it is required that K'T' > 4Q. The approximation of linear convolution (2.1) by
circular convolution (3.1) requires P <« T, and therefore QQ <« T. However, this constraint -
has to be relaxed. For example, in a typically sized room, P is always on the order of 103
at the sampling rate of 8kHz. But the ¢ imation of the PSD as well as the computational
complexity require that 7" not to be to: .. :ge, typically, less than 10*. In managing all these
constraints, we always choose Q < T, and set K > 4 to avoid the under-determined case.

The un-mixing filter, W (w) for each frequency bin w (w = 1,...,T) that simultaneously
satisfies the K decorrelation equations is obtained using an over-determined least-squares
solution which seeks to ::inimize the off-diagonal elements of (3.9). In this framework, the
un-mixing filter matrix iz given by

K
W) = argmin Y IIV(w,KII%, (3.11)
W) i
where || - ||% is the Frobenius norm squared (sum of squares of all elements) and the off-
diagonal matrix is given by :
V(w k) = W(WRW(w) - diag [W(w)R, W ()], (3.12)

6



where diag [-] is the diagonal matrix formed by extracting the diagonal elements of the matrix
argument. The least-squares solution to (3.11) can be searched for using the well-known
steepest descent algorithm

W () = WOW) — p(w )'a“v“v?%"_ﬁ{z”va)“’ k)||F} (3.13)

forw=1,...,T. In this equation, we iteratively update the filter matrix W(w) by adjusting
it in the direction which leads to the “smallest” V(w, k), i.e. smallest off-diagonal values of
(3.9). In Appendix A, we provide the complete derivation for the gradient term in (3.13).
Substituting the result of the derivation into (3.13) leads to the filter update

W““’(w) = WOW) - p(w) ,§V(‘””°) (W, k)Rx(w,k).  (314)

In [3], it is noted that the gradient terms scale with the square of the signal powers, which
vary considerably across frequency and result in wild fluctuation of the gradient terms for
different frequencies. Thus, we use a step size function

pw) = L (3.15)
>R, Kl

where [i is a normalized step size. To fik the arbitrary scaling in W(w), only the off-diagonal
elements of W(w) are updated, thus diagonal elements always remain at their initial values.
3.3 The Permutation Inconsistency/Spectral Resolution Tradeoff
If W(w) diagonalizes Ry(w, k), i.e.

R,(w,k) = [f,)” OD”]_ (3.16)

then W'(w) = PW/(w), with P a permutation matrix, also diagonalizes Ry(w, k)

Ry(w,k) = PW(w)Re(w, W (w)PT

- [ 0][o" 511 6]

_ [ bn 0 ] | (3.17)

Note that W(w) and its permutation W’(w) will lead to the same cost, J(w) at each fre-
quency w. Therefore the least-squares solution may consist of a different permutation of
W {(w) at each frequency bin, causing arbitrary permutations in the separated signals over
the spectrum. Fig. 4 illustrates the permutation problem. Here the spectral components
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Figure 4: Permutations across the spectrum of the output signals.

(b) Inconsistent permutations

while uncorrelated at each frequency, are not properly collected at the same channel output,
i.e. mixed in the frequency-domain.

In [3], this problem is solved by constraining the length of W(n) to @ <« T, thereby
forcing the solutions to be continuous or “smooth” in the frequency-domain. This constraint
is applied by starting the gradient algorithm with an initial value of W(w) that satisfies
Wi(n) = 0for @ < n < T -1, and then following the constrained gradient, which is a
projection of the gradient term in (3.13) with the projection operator

G = FZF™! (3.18)

where F is the Discrete Fourier Transform (DFT) matrix and Z is the truncation matrix
given by

1, i=j1<@Q
Z; = {0, i=j i>Q (3.19)
0, i1 #].

The projection is implemented by first transforming the gradient to the time-domain, zeroing
all components for n > @, and transforming back to the frequency-domain. The main
problem with this solution to the permutation problem is the limited size of un-mixing
filters. It is well-known that good separation performance requires long filters to accurately
model the inverse of the acoustical impulse response. In [3], it was proposed that a large
Q (filter size) can be achieved by increasing the block size T. However, as described in the
previous section, T cannot exceed 10* for a sampling rate of 8kHz. Thus, as shown in [4],
Q@ is limited to a value on the order of 10? in order to minimize the permutation problem.

8



However, with this size of () there is insufficient spectral resolution in frequency-domain. The
permutation-inconsistency/spectral-resolution tradeoff is pictured in Fig. 5 with varying Q
and fixed T = 2048. As one can see the best Signal-to-Interference Ratio Improvement
(SIRI), formally defined in the next section, is 13dB and achieved with @ = 400.

14 T T T T

12

),

SIR!
o

0 500 1000 1500 2000 2500
Un-mixing fiker size Q

Figure 5: Average SIRI versus un-mixing filter length Q.

3.4 A Multiresolution Approach for FDADF

A multiresolution frequency-domain (MRFD) algorithm was proposed by Ikram and Morgan
to satisfy the conflicting requirements of permutation alignment and spectral resolution [4].
In the multistage procedure, the FDSOS method of (3.14) is used with increasing values
of filter length @ at each stage of the algorithm. Different values of Q imply varying the
frequency-domain resolution of W(w) at each stage, hence the name “multiresolution.” The
rationale behind such an approach is to allow the permutations to align themselves using a

“smaller value of Q << T in the early stages of the algorithm. Once the permutations are
aligned, they tend to retain their order even if the value of @ is increased. The increase in
the value of @, however, provides the desired spectral resolution which is lacking in the early
stages.

A block diagram illustrating the blind separation of speech signals using the MRFD
algorithm is shown in Fig. 6. The mixing stage is followed by S un-mixing stages, each
of which attempts to further separate the sources using an un-mixing filter with increased
spectral resolution. Note that the separated output signals from each un-mixing stage (after
convergence) at each stage are carried over as the initial weights for the following stage. To
initiate the separation procedure, W§°’ = I, is used in the first stage. Since the un-mixing
of the speech signals is carried out by S different sets of weights, the SIR, for the MRFD




algorithm can be computed using the overall multichannel response
Alw) = W (w)W,(w)...W;(w)H(w) (3.20)

in place of H(w) in (3.24).
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Figure 6: Block diagram of Multiresolution Frequency Domain blind speech separator.

It is well-known that a blind estimate of W{(w) at frequency w can be best obtained up
to a scale and a permutation. Therefore, at each frequency w, the separated signal s;(w)
may have §;(w) = vs;1(w) or §;(w) = vsy(w), where 7 is an arbitrary scaling factor, and
the second possibility arises from a simple interchange of the rows of the un-mixing filter
matrix W(w). Consequently, the recovered source signal, §; is not necessarily a consistent
estimate of s; over all frequencies. What occurs is that each “separated” output contains
scaled, spectral energy at particular frequencies from the other source and vice versa. In [3],
this problem was solved by constraining the length of W(w) to @ < T, thereby forcing the
solution to be smooth or continuous in the frequency domain. However, due to insufficient
spectral resolution, actual SIRI is modest.

In [6], the authors explore SIRI for various choices of Q. As mentioned above, for @ <
T, insufficient spectral resolution limits actual SIRI. Although choosing Q =~ T provides
sufficient spectral resolution, sufficient continuity of the un-mixing filters in the frequency
domain is not achieved. A sub-optimal choice of @), however, can be found which provides a
good compromise between the two competing objectives although performance is still modest
and below theoretical SIRI when Q =~ T' and permutations of W(w) are perfectly aligned.

Experimental results indicate good performance with only two stages where @, is ap-
proximately equal to the reverberation time of the room in sample periods and (as a rule of
thumb), @; =~ @>/4. A typical reverberation time of 250ms at an 8kHz sampling rate would
give Q2 = 2000. When rounded up to a power of two for a convenient choice of block length
and FFT implementation, we have @, = 2048.

3.5 Modifications to MRFD

In this section, we discuss several modifications to the MRFD algorithm based on our own
independent research which improve computational efficiency and performance. Results
with using the modified MRFD algorithm are compared to the original algorithm in the
next section.
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3.5.1 Real-Valued Constraint on the Un-mixing Filters

The coefficients of the acoustical impulse responses, H(n) will always be real-valued numbers
and thus the un-mixing filter coefficients, W(n) will also real-valued. Exploiting this fact
can reduce the computational complexity by half since from the the Hermitian property of
the DFT, we have

Ww) = W'(Q-w) (3.21)

forw=0,...,Q — 1. Therefore we need only solve the least squares problem in (3.11) for
2(@ + 1) unknown parameters given K(T + 1)/2 constraints in (3.9).

3.5.2 Reinitialization of W(w) at Each Stage

In [4], the un-mixing filters W (w) are initialized at each stage with the converged coefficients

of WSIL)I( ) from the previous stage—a technique known as “cascaded initialization”. For
the first stage, we set W% )(w) = 1. However, the algorithm is not directly optimizing the un-
mixing filters, but instead minimizing the CPSDs. Also, the gradient algorithm may reach
a local minima at interim stages. Therefore, reinitializing Wgo)(w) may help the algorithm
to reach different local minima at the gth stage and “save” the improvement achieved in
current stage. In order to evaluate the objective function J(w) at each iteration, we measure

the diagonalization of Ry (w, k) with -

4 T-1 2

3 3 IRy W)

ZTfi > 1By, k)P

k=1 w=0i=1 1—1 JE

where f?gij (w, k) is the ijth element of the PSD matrix of output defined in (3.9).

Fig. 7 compares the learning curves of the cascaded initializing strategy (two dash lines
with +) [4] and those of the reinitialization approach (two solid lines) with the measurement
in (3.22) for the two-stage MRFD. The lower lines (solid line and dashed line are overlapped)
are the learning curves for the first stage, and the upper lines are the learning curves for
the second stage. We can see in the case of reinitialization O is “saved” at the end of the
first stage and is continuously improved at the second stage. The “save-attack” behavior is
thought to be due to the update of Rx(w k) at the beginning of each stage. A quantitative
comparison of SIRI is also given in Table 3.

3.5.3 Projection of the Un-mixing Filters W(w)

As explicitly stated in [7], the projection G (3.18) is implemented by transforming the
gradient into the time-domain, zeroing all components with 7 > @, and transforming back
to the frequency domain. Before truncating the gradient in the time-domain, we have to first
normalize it by K, ||Rx(w, k)||%, in order to stabilize the algorithm. For simplicity in the
Matlab implementation of the MRFD algorithm, we instead apply the projection operator
P directly to the un-mixing filters W(w) after each update. Our results show that both

11
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Figure 7: Comparison of two initializing strategies.

projection methods achieve the same SIRI performance due to the linearity property of the
DFT. :
We summarize the MRFD algorithm with the above modifications in Fig. 8.

3.6 Performance Metrics

Researchers evaluate the performance of blind speech separation and speech enhancement
algorithms in various ways. These include speech recognition rates [3]; plots of separated
signals [8], [9], [10]; and analysis of the improvement to the Signal-to-Interference Ratio after
processing [3], [4]. In this work, we have exclusively measured algorithm performance using
the SIRI since this is most easily computed measure and allows easy comparison with other
algorithms. For further information on how improvements to the SIR impacts automatic
speech recognition (ASR) see [11].

The average input signal-to-interference ratio (SIR;) is defined as the ratio of the total
signal power obtained via direct channels (hy1, has) to the total signal power obtained via
cross channels (hai, hi2), ie.

T-1 2

> S Hu(w) |siw))?
SIRi = w=0 i=1 (3.23)

T-1 3 :
> > | Hiy(w) |si(w)]?
—1j=1,ji

w=01

Replacing H(w) by W (w)H(w) similarly defines the average post-processed, or output signal-
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x(w, k) = 123 w(r)x(mPT + 7)e 72/, T, Short-Time Fourier Transform
Forg=1:5G
Ry(w, k) = N Y M- x(w, Mk + m)x¥ (w, Mk + m); Estimate PSD
V(w,k) = Oﬁ [Rx( k)], Build cost matrix
p(w) = =xk—2+———; Normalize step size

o1 IRx(w B3’
Forl=1: L
C =25k | Off[V(w, k) WO (w)Ry(w, k)]; Build correction matrix
WD () = W(w) — pu(w)C; Update W(w) at each frequency
WEHINT — w) = [WHD(w)]*; Apply symmetric constraint
G = FZ,F~!; Projection operator
W,-(jl“) = GW;; (1), ; Apply length constraint on un-mixing filters

End

x@)(w, m) = W(w)x?(w,m); Current stage separation
End
y(,r, m) = 1 zg’zo X(SG) w, m)ejzde/T

y(n) = XYL §(n — mBT,m); Synthesize time-domain signals

Figure 8: Modified MRFD Algorithm for speech separation.

to-interference ratio (SIR,).

T-1

2
Zl W(w H(w n' IS,(W)I
SIRo = e=0a=] (3.24)

T—1 2 2 9 0
> ;#_|[W<w)H(w)1ijl J5; ()|

w=0 i=1 j=

The objective of blind speech separation algorithms is to obtain a high SIR improvement
(SIRI) given by the ratio of (3.23) to (3.25)

SIRI = SIR,/SIR;. (3.25)

In [12], Schobben et al. divided the suite of test cases into two main categories:

1. Controllable Synthetic Separation Problems

In this case, the channel impulse responses and source signals are known a prior due to
the simulated approach to testing. In our experiments, we simulate the impulse responses
from an acoustic source to multiple microphones using the image method described in [13]. -
- The simulated room is shown in Fig. 9. The image method requires the dimensions of
the virtual room; coordinates of each source, (zs,,¥s,, 2s,;); coordinates of each microphone,
(%m; s Ym,» 2m; ); and reflection coefficients of the six walls, p;, | = 1,...,6. Parameters listed
" in Table 1 are used in our simulations except otherwise specified. For testing purposes,
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Figure 9: Room geometry (coordinate units in meter).

speech mixtures were digitally synthesized according to (2.1) using speech sources drawn
from the Linguistic Data Consortium’s (LDC’s) Texas Instruments, Massachusetts Institute
of Technology (TIMIT) speech corpus and filtered with impulses simulated with the image
method. This speech corpus consists of short utterances from a large sample of American
English speakers. For more information on this speech database see [14].

Table 1: Simulated room parameters.

Parameters Values (in meters)
Source 1 coordinates (2.13, 0.91, 1.52)
Source 2 coordinates (3.35, 0.91, 1.52)
Microphone 1 coordinates (2.23, 2.74, 1.68)
Microphone 2 coordinates (2.83, 2.74, 1.68)
Room dimensions (5.06, 3.41, 2.44)
Reflection coefficient, p (0.3, 0.3, 0.3, 0.3, 0.3, 0.3)

2.Real-World Recording Problems

Here, original source signals and impulse responses are not available. However, we can still
estimate direct-channel signal power (numerator) and cross-channe! signal power (denom-
inator) in (3.23) by using alternating source signals [3]. We estimate the contributions of
source i while source 7 is “on” and all other sources are “off”. For a two-channel mix, Fig. 10
shows this approach. In this case, we have four mixed signals and four separated signals,
~ including the direct-channel contributions (z;1, Z22, %11, ¥22) and the cross-channel contribu-
tions (19, Za1, Y12, Y21). We can measure the SIRI as in (3.25) where, in this approach, we

14
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Figure 10: Block diagram of indirect SIRI metric.

have
T-1 2

> lzaw)l?

. w=0 i=] :
SIRi = Z5Y=L ~ (326)

ZZ Z |93-'j(¢*’)|2

w=0 i=1 j=1,j#i

and

T-1 2

Z Z |yii(w)|2

SIRo = z*3%=% : (3.27)

ZZ Z Iyi,-(w)lz

w=0 i=1 j=1js#i

For real-world testing, we used speech mixtures drawn from Lee’s recordings available over
the Internet at

http://medi.uni-oldenburg.de/members/ane/pub/demo_asa99/index.html
and the NMSU BSS speech corpus described below. \

3.7 Modified MRFD Implementation

The speech separation code contains eight different .c files and one .h (header) file. The first
and main ﬁle is the speech.c. The program needs the standard stdio.h, stdlib.h and math.h

15



to compile correctly. Several of the lower-level math and signal processing routines can be
found in [15].

speech.c — Contains the main() function and is where variable initialization, memory
allocation, and calls to other functions take place. This is the basis from where the
algorithm is processed.

complex.c — This file contains all the math functions for complex arithmetic as well
as defines the structure for complex numbers. The functions that are defined are as

follows.
— cmplx() ~ Converts real numbers to complex
— conjg() — Conjugate of complex number
— cadd() — Complex addition
— csub() — Complex subtraction
— cmul() — Complex multiplication
— rmul() - Multiplication by real
— cdiv() — Complex division
— rdiv() - Division by real
— real() - Real part of complex number
— aimag() — Imaginary part of complex number

cexp() — Complex Exponential

cmplx.h - Defines of all the complex functions
fft.c — In-place decimation-in-time (DIT) Fast Fourier Transform (FFT)
ifft.c — Inverse Fast Fourier Transform (IFFT)

bitrev.c — Does bit reversing of a B-bit integer, used by the Fourier Transforms
dftmerge.c — Discrete Fourier Transform (DFT) for radix-2 DIT FFT
shuffle.c — In-place shuffling (bit-reversal) of a complex array

swap.c — Swap two complex numbers

The change of the C implementation from a non-real-time model to a real-time model
would require a few foreseeable changes in the code. There are a couple loops that operate
on the entire signal, the normalization for example. The parameters for these loops will need
to be modified for a real-time implementation. Some loops will need to be eliminated as well
and replaced with control code for which block of samples it is operating on. The control
mechanisms for the loading and operating of samples in buffer blocks will also need to be
added. For a real-time implementation the code would most likely need to be optimized as

16



Table 2: Execution times for processing 50s long speech signals using C-implementation of
Modified MRFD.

real | 0m20.551s
user | 0m19.980s
sys | 0m0.420s

well, there 'are many places in the non-real-time model where this can be done. In general
the core algorithm in the C code implementation is sound and would most likely only require
other code to be wrapped around it.

Benchmarks for processing two 50s long speech signals (8kHz sample rate) are listed in
Table 2. Processing times were determined with the following instruction

time ./speech mixl.txt mix2.txt

The test PC has dual 1.2GHz AMD Athlon MP Processors, 1GB of DDR RAM, Red Hat
Linux 7.2 (Kernel 2.4.16). The codes were compiled under gcc-2.96 with glibc-2.2.4. We
note that the program is not multithreaded so it has no benefit of a dual processor machine.
Code is compiled with Athlon optimizations.

3.8 NMSU BSS Speech Corpus

In this work, we developed a speech corpus in order to standardize evaluation and testing of
this and future speech separation/speech enhancement algorithms. This corpus is available
(free of charge) over the Internet at

http: / /. ece . nmsu. edu/"pdeleon/BSS/index.html

The corpus contains a collection of impulse responses and speech recordings from various
environments and is more extensive than other available databases specifically targeted at
BSS. Also included on the website are more detailed descriptions of recording procedure,
- environment, speakers, etc.... Figs. 11 and 12 show sample screen shots of the web pages for
" the NMSU BSS speech corpus. Here we briefly described collection procedure and available
recordings.

3.8.1 Impulse Responses for Various Acoustic Environments

In order to provide researchers the ability to synthesize signals in various acoustic environ-
ments, impulse responses were measured for various environments. For each environment,
a pair of direct channel impulse responses (left source to left microphone and right source
to right microphone) and a pair of cross channel impulse responses (left source to right mi-
crophone and left source to right microphone) were measured as in Fig. 13. The impulse
responses are only accurate to within a delay since the stimulus used to excite the room re-
sponse was not synchronized to the recorder. In order to simplify, all responses begin 50ms
before the main peak (direct path) and extend a total of 3sec. Typically, the cross channel
responses have a longer delay than the direct channel since the path is longer.

Recording Equipment Used in All Impulse Response Measurements

The following recording equipment was used in collection of impulse responses.
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Figure 11: Main web page for the NMSU Blind Speech Corpus.
e (1) Dell Dimension XPS R400 PC (Pentium II @ 400MHz, 128MB RAM, 40GB disk,
Windows 98) (www.dell.com)
e (1) Echo Layla 20-bit multitrack recording system (www.)
¢ (2) Shure omni-directional microphone Model VP64A2 (www,.shure.com)

¢ (2) Applied Research And Technology (ART') Professional processor series tube preamp
(www.art.com)

¢ (2) Balanced (XLR) microphone cables from microphones to preamps
e (2) Balanced (XLR) microphone cables from preamps to Layla

Recording/Editing Software
The following software was used in collection of impulse responses.

e Syntrillium Software Corporation’s Cool Edit Pro v1.2 for recording and (www.syntrillium.com)

e Aurora Convolve with Clipboard and Generate Log Sweep plug-ins for Cool Edit pro
for impulse response measurements (www.ramsete.com/aurora/)

o SoundApp PPC v2.7.3 for sample rate conversion to 16kHz from 48kHz (www.download.com)
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Figure 12: Sample web page for the the lecture hall recording environment.
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Figure 13: Direct and cross channel impulse responses.

'Room Impulse Response Measurement
The Aurora plug-in for Cool Edit Pro utilizes a Chirp (sinusoidal sweep) stimulus in order

to compute the room impulse response which is sampled at 48kHz. Impulse responses are
also provided at a 16kHz sample rate.
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Anechoic Chamber

The anechoic chamber is located on the New Mexico State University campus in the Klipsch
School of Electrical and Computer Engineering (Thomas and Brown, Room 311). Fig. 14
shows the schematic of recording setup with dimensions. The available impulse response files
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Source Source

Figure 14: Schematic of Anechoic Chamber recording setup.

are:
Anechoic_ImpResp_16k_LL.wav Anechoic_ImpResp_16k_LR.wav
Anechoic_ImpResp_16k_RL.wav Anechoic_ImpResp_16k_RR.wav
Anechoic_ImpResp_48k_LL.wav Anechoic_ImpResp_48k_LR.wav
Anechoic_ImpResp_48k_RL.wav Anechoic_ImpResp_48k_RR.wav
Bathroom

The men’s bathroom is located on the New Mexico State University campus in the Klipsch
School of Electrical and Computer Engineering (Goddard Hall, Room 101). Fig. 15 shows
the schematic of recording setup with dimensions. The available impulse response files are:

Bathroom_ImpResp_16k_LL.wav Bathroom_ImpResp_16k_LR.wav
Bathroom_ImpResp_16k_RL.wav Bathroom_ImpResp_16k_RR.wav
Bathroom_ImpResp_48k_LL.wav Bathroom_ImpResp_48k_LR.wav
Bathroom_ImpResp_48k_RL.wav Bathroom_ImpResp_48k_RR.wav

Large Room (Conference Room)

The large room is located on the New Mexico State University campus in the Klipsch School
of Electrical and Computer Engineering (Goddard Hall, Room 167). Fig. 16 shows the
schematic of recording setup with dimensions. The available impulse response files are
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Figure 15: Schematic of Bathroom recording setup.
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Figure 16: Schematic of Large Room recording setup.

LargeRoom_ImpResp_16k_LL.wav
LargeRoom_ImpResp_16k_RL.wav
LargeRoom_ImpResp_48k_LL.wav
LargeRoom_ImpResp_48k_RL.wav

Lecture Hall

. LargeRoom_ImpResp_16k_LR.wav
LargeRoom_ImpResp_16k_RR.wav
LargeRoom_ImpResp_48k_LR.wav
LargeRoom_ImpResp_48k_RR.wav
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The lecture hall is located on the New Mexico State University campus in the Klipsch School
of Electrical and Computer Engineering (Thomas and Brown, Room 104). Fig. 17 shows the
schematic of recording setup with dimensions. The available impulse response files are

(7’)
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.. O e
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Figure 17: Schematic of Lecture Hall recording setup.

Lecture_ImpResp_16k_LL.wav Lecture_ImpResp_16k_LR.wav

Lecture_ImpResp_16k_RL.wav
Lecture_ImpResp_48k_LL.wav
Lecture_ImpResp_48k_RL.wav

Lecture_ImpResp_16k_RR.wav
Lecture_ImpResp_48k_LR.wav
Lecture_ImpResp_48k_RR.wav

Small Room (Office)
The Small Room is located on the New Mexico State University campus in the Klipsch

School of Electrical and Computer Engineering (Goddard Hall, Room 171). Fig. 18 shows
the schematic of recording setup with dimensions. The available impulse response files are

SmallRoom_ImpResp_16k_LL.wav SmallRoom_ImpResp_16k_LR.wav
SmallRoom_ImpResp_16k_RL.wav SmallRoom_ImpResp_16k_RR.wav
SmallRoom_ImpResp_48k_LL.wav SmallRoom_ImpResp_48k_LR.wav
SmallRoom_ImpResp_48k_RL.wav SmallRoom_ImpResp_48k_RR.wav

Stairwell
The stairwell is located on the New Mexico State University campus in the Klipsch School
of Electrical and Computer Engineering on the second floor. Fig. 19 shows the schematic of

recording setup with dimensions. The available impulse response files are

Stairwell_ImpResp_16k_LR.wav
Stairwell_ImpResp_16k_RR.wav
Stairwell_ImpResp_48k_LR.wav
Stairwell_ImpResp_48k_RR.wav

Stairwell_ImpResp_16k_LL.wav
‘Stairwell_ImpResp_16k_RL.wav
Stairwell _ImpResp_48k_LL.wav
Stairwell_ImpResp_48k_RL.wav

22



(,,)
(17) i 1

(1,12, ) (1112 )

i 1 O Oaowo
et it

Source Source

121 eit

Figure 18: Schematic of Small Room recording setup.
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Figure 19: Schematic of Stairwell recording setup.

Study Lounge
The study lounge is located on the New Mexico State University campus in the Klipsch

School of Electrical and Computer Engineering (Thomas and Brown, Room 102). Fig. 20
shows the schematic of recording setup with dimensions. The available impulse response files
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Figure 20: Schematic of Study Lounge recording setup.

_ are

Study_ImpResp_16k_LL.wav Study_ImpResp_16k_LR.wav
Study_ImpResp_16k_RL.wav Study_ImpResp_16k_RR.wav
Study_ImpResp_48k_LL.wav Study_ImpResp_48k_LR.wav
Study_ImpResp_48k_RL.wav Study_ImpResp_48k_RR.wav



4 Results and Discussion

In this section, we report results of our research. These results include

e Optimal parameter selection for the modified MRFD algorithm and resulting SIRI
results .

‘e Algorithm performance in terms of various simulated room sizes and reverberation
times

o Algorithm performance when mixture signals have additive noise present

e Algorithm performance and processing times for short mixture signal lengths and im-
pact on real-time operation

e Performance of separating (enhancing) one speech signal from a background of additive
noise.

4.1 Selection of Optimal Parameters for the MRFD Algorithm

-We consider the selection of optimal parameters for the modified MRFD algorithm. The four

most important parameters that affect the separation performance are the: block length (or
maximum filter length), T°; length of the un-mixing filter, W;; at each stage given by the set
Q ={Q1,...,Qsc}; adaptive step size, fi; and number of iterations, L. Generally, the longer
the un-mixing filter is, ultimately the better the SIRI. However, the permutation problem
constrains Q < T'. Generally, we choose at the last stage, a maximum un-mixing filter length .
equal to the block length, Qsg = T. The parameter set for the multistage method includes

the number of stages (SG) and the filter length Q; at each stage.

Careful selection of the step size is necessary to obtain good performance from gradient-
based adaptive algorithms used in decorrelation and speech separation tasks [16]. In this
context, the step size controls the convergence rate and the misadjustment, which form
a tradeoff pair. Fast convergence, i.e. convergence with smaller L, requires a bigger step
size, which may lead to large misadjustment. On the contrary, we can achieve much better
SIRI using a smaller step size but at a cost of decreased convergence speed. The number
of iterations, L, is one of the main computational bottlenecks in the MRFD algorithm.
We ideally want to choose the smallest value L in order to achieve fast separation while
maintaining acceptable SIRI. There are also other parameters that play less important roles
in the MRFD algorithm. These are

e Initial value of un-mixing filter matrix, W (w) — An adaptive system is stable in the
sense that it can be driven to the steady state without regard to the choice of initial
status. However, the objective function, J(w) has local minima, therefore we set the
initial un-mixing matrices W(®(w) to be identity matrices over frequencies as is typical
in the literature.

e Number of iterations, K — Building an over-determined least squares problem requires '
the number of superblocks, K > 4 in order to generate enough equations. Note that
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larger K can guarantee better separation performance due to better (longer-term)
statistical measures of the mixtures as shown in Fig.3. However, K also depends on
N, the length of the input mixtures. For a fixed N, K has to be properly chosen to
give good average estimates of the PSD matrix, Ry (w, k). In most of our experiments,
the input signals have a duration of 7 — 14 sec, accordingly, we choose 4 < K < 7
(assuming an 8kHz sample rate).

e Overlap factor, § — The required rate of the properly sampled short-time spectrum
representation needs to be 2 —4 times higher than for the equivalent TD representation
of the speech signal itself [5]. Thus, we set the overlap factor 8 = 0.5 for Hamming
window.

e Total number of blocks, U, and number of blocks in each superblock, M — These two
parameters are determined by the selection of the other parameters N, 8, T, and K

with U = N/(BT) and M = U/K.

4.1.1 Block Length T

An optimal T is desired to satisfy the short-time statistical assumptions regarding the speech
signals while maintaining high spectral resolution of the un-mixing filters (in our setting
Qsc = T). In order to measure the SIRI with varying block length under the same mixing
process, we make use of metrics given in (3.26) and (3.27) for real-world recordings because
the metrics given in (3.23) and (3.24) require P = T, i.e. varying mixing filter length at
the same time. In our experiment, we randomly choose 20 pairs of speech signals from the
TIMIT speech corpus. Each pair is mixed through the simulated room impulses, shown in
Fig. 21, with mixing filter length 2048. We fix other parameters as i = 1.0,L = 100, and
update the multistage parameter set according to Q = [T'/4, T|”. Fig. 22 shows the SIRI in
dB with T varying over the range 128 to 16384. We find the optimal block length 7" = 2048.

4.1.2 Multistage Parameter Set Q

Here, we fix the block length T' = 2048, the adaptive step size i = 1.0, and randomly choose
13 combinations of SG and @Q,. The average SIRI of 20 pairs of speech mixtures with the
sources randomly selected from TIMIT is measured for each case and listed in Table. 3.
There are two sets of experimental results for each case: the result in the first row of each
cell are the average SIRIs of MRFD, while in the second row are average SIRIs of modified
MRFD listed in italic font. One can see that the modifications tc: MRFD result in separation
performance that is 1-2dB better than that of the original MKFD at every stage for each
~case. Furthermore, the optimal performance is obtained in the two-stage case with ¢; = 500,
and @, = 2048 through modified MRFD algorithm. Again we note these modifications not
only improve SIRI but require no additional complexity (modification #2) and reduce cost
(modification #1).
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Table 3: Average SIRI for different combinations of [@Q,...,Qsg]

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Q. [SIRI| Q, |SIRI | Qs | SIRI | Q; | SIRI | O: | SIRI
(dB) (dB) (dB) (dB) 1 (dB)
300 | 15.83
17.31
200 | 14.82 | 500 | 14.76
15.79 16.21
300 | 15.83 | 1024 | 14.66
17.31 16.28
500 | 16.12 | 1024 | 14.49
17.70 15.97
300 | 15.83 | 2048 | 18.27
17.81 19.49
500 | 16.12 | 2048 | 18.41
17,70 79.63
700 | 16.07 | 2048 | 18.40
17.88 19.04
300 | 15.84 | 500 | 14.79 | 1024 | 14.28
1751 16.50 16.01
500 | 16.12 | 1200 | 14.41 | 2048 | 18.24
17.70 15.72 79.77
500 | 16.12 | 800 | 14.57 | 1000 | 14.16 | 1500 | 13.45
17.70 16.09 15.61 14.87
256 | 15.35 | 800 | 14.60 | 1024 | 14.22 | 2048 | 18.08
16.50 15.88 15.48 18.90
300 | 15.84 | 500 | 14.79 | 700 | 14.38 | 1024 | 14.18 | 2048 | 13.42
17.81 16.50 16.14 15.94 14.99
5001 16.12 | 800 | 14.57 | 1000 | 14.16 | 1500 | 13.44 | 2048 | 15.99
17.70 16.09 15.61 14.87 18.70
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Figure 22: Average SIRI versus block length T'.

4.1.3 Adaptive Step Size

Fixing T = 2048, and Q = [500 2048], we examine the SIRI with varied adaptive step size
ji in the range from 107° to 2.0. The results are shown in Fig. 23. As one can see that the
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optimal adaptive step size is achieved at i = 1:0. Also, from Fig. 24, it is easy to see that if
ji is too small, the adaptive algorithm takes too long to converge as shown in the first four
plots. On the other hand, if fi is too large (> 1.0), the algorithm may become unstable. This
leads to failure as can be seen in the last two plots of Fig. 24. ‘
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Figure 23: Average SIRI versus adaptive step size ji.

4.1.4 Number of Iterations L

It is well-known that for the MRFD algorithm, more filter update iterations will lead to a
higher SIRI. However, a large L requires more computational time, which limits tracking
a time-varying environment and real-time applications. Fig. 25.(a) shows the SIRI plot
with increasing L and other parameters fixed as T' = 2048, Q = [256 2048], and i = 1.0.
Fig. 25b shows the processing time versus the number of iterations L (Matlab 6.0, Dell
Precision Workstation 330 with 1.8GHz P4 and 1GB RAM). In the simulations we are
mainly interested in the SIRI performance with acceptable processing time, we therefore
choose L = 100.

4.1.5 Summary

Optimal parameters for the modified MRFD that yield good separation performance at rea-
sonable computational cost are shown in Table 4. Unless otherwise noted, these parameters

are used in all the following experiments.
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Table 4: Simulation parameters

Parameter Value
Overlap factor, g 0.5

Number of superblocks, K 6

Number of iterations, L 100
Normalized step size, i 1.0
Multistage parameter set, Q [500, 2048]"
Block size, T 2048

Initial un-mixing filter matrix for all stages, W(©(w) (1) (1)
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4.2 Resillts on the Effect of Room Size and Reverberation Time

We simulate the room impulse responses h;;(n) for various reflection coefficients, p which
determines the “liveliness” of the acoustic environment. For simplicity, we set p the same
for all six walls in the simulated room. The average SIRI using the modified MRFD of 20
random pairs of speech mixtures are measured and pictured in Fig. 26. As expected, higher
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Figure 25: The tradeoff between separation performance and processing time.

SIRIs are achieved for the room with smaller reflection coefficient, i.e. less reverberation.
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Figure 26: SIRI performance in simulated room with different reverberation.
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4.2.1 Various Room Sizes

In this section, the room geometry in Fig. 9 varies with ¢ in the range of 4m to 30m
according to Table 5. The reflection coefficient is p = 0.3 for each of six walls. Fig. 27

shows the resulting SIRI obtained by varying room size parameter a. As one can see, the
separation performance improves with increasing room size, which is also due to the decreased -

reverberation as in the case of varying reflection coefficients.

Table 5: Simulated room parameters.

Parameters Values
Sourcel Coordinates (3-1,a—2,15)
Source2 Coordinates (5+1,a—2,15)

Microphone 1 coordinates | (5 —1,a,1.7)
Microphone 2 coordinates | (% +1,q,1.7)
Room Dimensions (a,a,%)
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Figure 27: SIRI performance in simulated room with varying room size.

4.3 Results with Two Speakers and Additive Background Noise

If a noise source is present in addition to the two speech sources, separation of the speech
signals will still proceed but this noise will be present in each separated signal. In addition,
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SIRI gracefully degrades as the SNR decreases (noise power increases). Fig. 98 illustrates
the experimental setup and Fig. 29 shows the SIRI performance as a function of SNR. This
finding and motivates the requirement for additional denoising of correlated noise sources

from the speech signals in order to obtain accurate ASR.
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Figure 28: Block diagram of BSS with background AWGN.
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Figure 29: SIRI performance in various levels of background noise.

From Fig. 29, we can see that 3 — 10dB SIRI can be achieved when the mixtures are
buried in background noise (—10dB < SNR < 0dB) as in a vehicle or aircraft or other noisy
environment. When the average power ratio of the mixed speech signals to the additive noise
exceeds 10dB, the MMRFD algorithm yields a 15.5dB SIRI in an average sense. We can
therefore conclude that MMRFD is robust under background, wideband noise conditions.
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4.4 Results with Short Mixture Signals

Up to now, all simulations have used mixing filters with fixed impulse responses. However,
the channel impulse responses may change dramatically even for the speaker just turning
his/her head 10 — 20 degrees, or leaning backward a couple of inches [17]. In practical
environments, the algorithm must be able to rapidly adapt in these dynamic situations.

We assume that during the time that multiple, second order statistics are estimated, the
mixing filters remain approximately the same [10]. The question we ask, however, is can we
collect enough samples for adaption before the change of mixing filters even under a slowly
varying acoustical environment? Or, equivalently what is the amount of data needed by the
MRFD algorithm for successful signal separation? In order to answer these questions, we
conduct an experiment to test the potential of an online application of the MRFD algorithm.
Fig. 30 shows the SIRI for various input signal lengths with varying number of iterations L.
As expected, we see that with increasing signal length, the performance of MRFD increases.
Quantitatively, the performance of MRFD approaches about 14dB SIRI with just 2sec of
input at sampling rate of 16kHz. We note that this is the upper bound of SIRI for most
other off-line algorithms with input signal lengths of 30 to 50 seconds [18], [19], [20].

2 T T ; T T 7
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Figure 30: SIRI versus length of input mixtures.

Even if there is enough data available, another question is posed in [17]: Is it possible to
perform the necessary computation in real time? Our computational benchmarks indicate
30sec of input speech mixtures recorded in a real room can be successfully separated in 75
sec with more than 20dB enhancement (Matlab 6.0, Dell Precision 330 with 1.8GHz P4,
1GB RAM). Fig. 31 shows the processing time versus the length of input for three different
numbers of adaptive iterations. We can see from Fig. 30 and Fig. 31 that properly reducing
the amount of iterations can dramatically save processing time while maintaining relatively

34



high SIRI. In addition, we have indications of near-real-time performance when MRFD is
implemented in C (as previously described in Section 3.7) and run on a PC. Therefore
real-time performance on a dedicated DSP should not be a problem.
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Figure 31: Processing time versus length of input mixtures.

4.5 Results with One Speaker in the Presence of Background
Noise

If a background noise (white noise or even music) is present in a single speaker’s speech
signal, MRFD can be used to separate the single speech signal from the background noise
with SIRIs comparable to the two speaker case. This results from the basic assumption that
the sources are uncorrelated. The system model is illustrated in Fig. 32, where sy(n) is now
a White Gaussian Noise (WGN) signal.

1 n

12

21

~ 2n

Figure 32: Block diagram of noise-cancellation problem.
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Simulations results indicate that we achieve 16.4dB measured by (3.23) and (3.24) when
the speech signal power is approximately the same as the noise noise power, i.e. input SNR
= 0dB. In the case of knowing that there is no cross-channel contribution from s;(n) to
z5(n), i.e. pure noise, we can apply a constraint of Wy, = 0, which increase the output SNR
by 5.03dB to 21.46dB. Fig. 33 is a plot of output SNR versus the SNR of noise-corrupted
input speech signals x(n). From this performance plot, we can see when the speech signal
is buried in the background noise (—20dB < SNRi < 0dB), we can achieve 23 — 30dB SNR
improvement (SNRI), which shows successful noise-cancellation. When the the source speech
signal dominates the mixture (SNRi > 40dB), no SNRI can be seen since there is little noise
to be cancelled in the first place.
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Figure 33: Signal-to-Interference Ratio Improvement as a function of noise after two-channel
BSS processing. Co
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5 Conclusions

In the blind source/speech separation problem, we attempt to separate out individual, speech
signals from a background of other undersired speech signals and other acoustic noise sources.
In this research, we have gained an understanding of the source separation problem for
convolutional mixtures and developed expertise with the Multiresolution Frequency-Domain
algorithm. We have improved the MRFD algorithm by developing methods for exploiting
symmetry in order to reduce computation by 50% and developing initialization strategies
for better performance. We have experimentally determined optimal parameters for the
algorithm and studied the effects of room size and liveliness on separation performance.
Simulations with both digitally-filtered and mixed speech signals as well as real-world signals
indicate good performance with this algorithm with 10-20dB improvements to the Signal-to-

- Interference Ratio of these sources. In the important case of speech enhancement, i.e. blind

suppression of background noise from a desired speech signals, we have been able to increase
SIRI upwards of 20dB. Finally, our work has demonstrated a robustness to separating speech
signals in the presence of noise. Furthermore, we have carefully examined the potential
for real-time processing with this algorithm and have concluded that good performance is
possible but with at least a 2sec. delay due to the inherent “block processing” nature of the
algorithm. v

In addition, as part of the deliverables for this grant, we have developed a blind speech
signal corpus or database containing speech signal mixtures in a variety of acoustical envi-
ronments. This database is now available on the Internet at

http://www.ece.nmsu.edu/ pdeleon/BSS/index.html

for free download.
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6 Recommendations

We have demonstrated that speech signals can be significantly enhanced despite little knowl-
edge regarding the speech signal itself, background noise signals, or acoustical environment.
The primary constraints are the need for multi-channel input signals and a 2sec. delay in
producing the enhanced signal. Given these constraints it may be possible to apply this work
to improving automatic speech recognition in adverse environments, although it is unknown
at this time, the direct impact SIRI has on ASR accuracy.

In most environments, there will be more than two sources of speech and noise. In this
case, we require extension of the two-channel MRFD to the multi-channel case involves gen-
eralization of (3.14). While this is fairly straightforward, two problems must be investigated
in order for multi-channel BSS algorithms to be realized to their full potential. First, the
multi-channel BSS algorithms will be very computationally complex with complexity grow-
ing as the square of the number of channels. With more than two acoustic sources, it is not
expected that the algorithms could be computed in real-time with current and near-term
DSP technology. This problem might be addressed with a specialized analog co-processor.
Second, the permutation inconsistency, where separated sources may contain spectral energy
at certain frequencies from the other source and vice versa, will be exacerbated in the multi-
channel case. In this case, there are now many, many more permutations which result from
simple row swaps of the unmixing filter matrix. This problem may be resolved through the
multi-resolution approach (or some version of it). The idea is that with short unmixing filter
lengths, @, the solution is smooth in the frequency domain and for the most part the per-
mutations are self-aligning. In order to increase spectral resolution and subsequently SIRI,
Q is increased. Thus for the multi-channel BSS algorithm, we may require more stages to
bring the filter length, @, up slowly in order to maintain permutation consistency.

38



7 References

References

[1] D.Morgan, E. George, L. Lee, and S. Kay, “Cochannel speaker separation by harmonic
enhancement and suppression,” IEEE Trans. Speech Audio Proc., vol. 5, pp. 407-424,
Sep. 1997. :

[2] K. Yen and Y. Zhao, “Adaptive co-channel speech separation and recognition,” IFEE
Trans. Speech Audio Proc., vol. 7, pp. 138-151, Mar. 1999.

[3] L. Parra and C. Spence, “Convolutive blind separation of non-stationary sources,” IEEE
Trans. Speech Audio Proc., vol. 8, pp. 320-327, May 2000.

[4] M. Tkram and D. Morgan, “A multiresolutional approach to blind separation of
speech signals in a reverberant environment,” Proc. Int. Conf. Acoust., Speech, and
Sig. Proc. (ICASSP), 2001. |

[5] L. Rabiner and R. Schafer, Digital Processing of Speech Signals. Prentice-Hall, Inc.,
1978.

[6] M. Ikram and D. Morgan, “Exploring permutation inconsistency in blind separation
of speech signals in a reverberant environment,” Proc. Int. Conf. Acoust., Speech, and

Sig. Proc. (ICASSP), 2000.

[7] L. Parra and C. Spence, “Separation of non-stationary natural signals.” in Indepen-
dent Components Analysis: Principles and Practice, eds. Richard Everson and Stephen
Roberts, Cambridge University Press, 2001.

[8] S. Amari, A. Cichocki, and H. Yang, “A new learning algorithm for blind signal separa-
tion.” in Advances in Neural Information Processing Systems, eds. David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, MIT. Press, 1996.

[9] T. Lee, A. Bell, and R. Orglmeister, “Blind source separation of real world signals,”
Proc. Int. Conf. Neural Networks, 1997.

[10] L. Parra and C. Spence, “Online convolutive source separation of non-stationary sig-
-+ nals” J. VLSI Sig. Proc., vol. 26, August 2000.

[11] F. Ehlers and H. Schuster, “Blind separation of convolutive mixtures and an applica-
tioms in automatic speech recognition in a noisy environment,” IEEE Trans. Sig. Proc.,
vol. 45, pp. 2608-2612, Oct. 1997.

[12] D. Schobben, K. Torkkola, and P. Smaragdis, “Evaluation of blind signal separation
methods,” Proc. ICA and BSS, 1999.

[13] J. Allen and D. Berkley, “Image method for efficiently simulating small-room acoustics,”
J. Acoust. Soc. Am., vol. 65, no. 4, pp. 943-950, 1979.

39




[14] W. Fisher, G. Doddington, and K. Goudie-Marshall, “The DARPA speech recognition
- research database: specifications and status,” Proc. DARPA Workshop on Speech Recoy.,
pp. 93-99, 1986.

[15] S. Orfanidis, Introduction to Signal Processing. Upper Saddle River, NJ: Prentice Hall,
1996.

[16] B. Krongold and D. Jones, “Blind source separation of nonstationary convolutively
mixed signals,” Proc. 10th IEEE Workshop on Stat. Sig. and Array Proc., 2000.

[17] S. Haykin, ed., Unsupervised Adaptive Filtering: Volume 1 Blind Source Separation.
New York, NY: John Wiley and Sons, Inc., 2000.

[18] K. Torkkola, “Blind separation of convolved sources based on information maximiza-
tion,” IEEE Workshop Neural Networks for Sig. Proc., 1996.

[19] S. Amari, S. Douglas, A. Cichocki, and H. Yang, “Multichannel blind deconvolution and

equalization using the natural gradient,” Proc. 1st IEEEWorkshop on Sig. Proc. Ad-
vances in Wireless Comm., 1997.

[20] R. Lambert and A. Bell, “Blind separation of multiple speakers in a multipath environ-
ment,” Proc. Int. Conf. Acoust., Speech, and Sig. Proc. (ICASSP), 1997.

40



Appendix A - Derivation of the Cost Function Gradient

We know that for any real-valued function f(z) of a complex variable z, the gradient V., f(z)
can be obtained by

_ i) L 81
Vf(2) = meyt+ a0 (A1)
— 23.2(2 ’

We can expand (3.9) as

> S VVI("‘J) W12( ) Iu(w k) R:uz(w k) Wfl(w) Wy, (w)
Ry(w,k) = [W;(w) wzz(w)H P (k) P, A)J [Wl*z(w) w};ﬁ(w)]

X v
- [ Aok szi‘”v’“) ] | (A.2)
which is a sequence of Hermitian matrices with

Ryo(,k) = [Waa(@)Royy (w, k) + Wia() Ry, (w, k)] Wi ()

| + [Wit () Ry, (@, k) + Win(w) R (w, )] Wiy ()
Ry, (wk) = [Wm(w)fim(w k) + Was(w) Ray, (w, k)] Wi (w)
+ [Wa1 (@) Reyy (w, ) + Waa(w) Ry (w, k)| Wi(w), (A.3)
Therefore, |
9 0J(w)
OW*(w)

| B| Ry (@, E)?  B|Ryyy (w, )P
22[ W w) | oW (w) J

Vwl(w)

— Z[ 1[12( L)aRylz(w k)+R* (

B'RyZl (UJ, k)
OW*(w) Y21 k) _—_—']

OW*(w)
= 2 kz_:l {Ryn(, k)A + Ry, (w, k)B}

K
= 2) V(w,k)D
k=1

K .
= 2;_:1 V(w, k)W (w)Ry(w, k). | (A.4)

with
A =

' 0 0
[ Wll(w)éwu(w1 k) + W12 (w)érzx (ww k) VVll(w)R-‘clz (w7 k) + Wl?(w)Rmzz (w1 k)
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B =

[ 14/21("‘")]%111(‘-“1 k) + Wé?(w)ﬁzzl(w’k) W21(w)é112(wa k) + W'—’?(w)émzz (w1 k) :l
0 0 ’
and '

D =

[ Wll(w)l?zu(w: k) + vvl?(“‘))}:ztm (wa k) W11(w)]?¢12(w, k) + Wl?(w)R;Izz (w: k) ]
W21(w)Rxn(w1 k) + W22(W)RI21 (w’ k) W21(w)R$12(wa k) + W22(w)R122 (w: k) '
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Appendix D - MATLAB Simulation Codes

mrfd208.m

» CO-CHANNEL CONVOLUTIVE MIXED SPEECH SEPARATOR

h

% This MATLAB code implements the blind speech separation algorithm of Ikram

% and Morgan [1]. The problem is as follows. Given two signals, x1 and

% x2 each containing a convolutive mixture of two source speech signals, si and
% s2 produce separated speech signals, y1 and y2 such that yl ~ 81, y2 © s2,

% This is a blind separation problem since we only have x1 and x2 and no

% other additional information. The approach assumes the uncorrelatedness

% between the original source signals. We then attempt to diagonalize the

% estimated Power Spectral Density (PSD) matrices at multiple time segments

% to decorrelate the mixtures in frequency-domain (avoiding the deconvolution

% in time-domain) to achieve the separation.

Y-- e e

% Notes

% 1. This MATLAB implements the modified version of the algorithm in [1] as

% given in Table. 3 in this thesis.

h

% 2. All signals stored as column vectors.

Y - e

% Version History

h

% 2.05 (05 Sep. 01) Cleaned up the mess and added comments.

0/. .
% 2.04 (26 Aug. 01) Selected the optimal parameters, and changed K to 6.
h

% 2.03 (25 Aug. 01) Fixed a bug on the implementation of the symmetric

o~

% constraint, the correct one is W(omega)=W(Q-omega+1)

% for omega=1:Q, so we need to seek W(omega) for

% : omega=1:T/2+1. Added the objective measurement to evaluate
% how well the diagonalization worked at each iterationm.

h |

% 2.02 (14 Aug. 01) Modified the MRFD by the reinitialization of W(omega) at
% each stage.

%

4 2.01 (27 Jul. 01) Changed the required input signal length of 51 seconds as
% the experiments in [1] to any length N. Fixed K=4, thus
% calculate U=N/(beta*T) and M=U/K.

h

% 2.00 (27 Jun. 01) Major rewrite with Prof. De Leon.
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% (1) Changed the truncation of the un-mixing filters from frequency-domain

% to time-domain to smooth the frequency responses and solve the .

h permutation problem. :

% (2) Added the symmetric constraint on the un-mixing filters in frequency-
% domain so that we only needed to seek W(omega) for omega=1:T/2, and

A reduce the computational complexity by half.

% (3) Replaced most of the loop commands by matrix-based calculatlon to

% reduce the computational time.

% (4) Tried to normalize the Gradient by its own power instead of the

% average power of mixtures, but the SIRI performance was not as good

% as the original normalization approach.

h .
% 1.03 (1 Apr. 01) Modified the approach to synthesize the output signals from
h overlap-save to overlap-adding, by which the separated signals sound
% normal though no separation yet.

D/. .
% 1.02 (10 Mar. 01) Fixed a bug on the Hamming window function. Measured the
% separation of instantaneous mixtures.

) : , .
% 1.01 (5 Feb. 01) Added the intermediate separation process before the second
% stage, and also update the PSD matrices at multiple time segments.

Y :

% 1.00 (Jan 30, 01) First version based on the original understanding or MRFD

% reported by Ikram and Morgan in [1]. In this versionm:

% (1). We took the gradient term as given in [2] without derivation.

% (2). We used all the parameters given in [1], and Q = [500, 2048]’. I

% " the first stage, Q1=500, we only seek the un-mixing matrices for

% the first Q1 frequencies, while for the rest (Q2-Q1) frequency bins,
% we set W(omega)=[1, 0; 0, 1].

% (3). For the synthesis of the separated signals, we first passed the
o mixture vectors through the un-mixing filter matrices W(omega) in

% frequency-domain (multiplication), then converted the output signals
% back to the time-domain, finally we divided them by the window '
b function and took use of the overlap-save approach.

h

% [1] M. Ikram and D. Morgamn, "A multiresolution Approach to Blind Separation
% of Speech Signals in A Reverberant Environment", In Proc. IEEE ICASSP,

% Pages 2757-2760, 2001. .

% [2] L. Parra and C. Spence, "Convolutive Blind Separation of Non-Stationary
% Sources", IEEE Transactions on Speech and Audio Processing, 8(3):320-327,
% May 2000.

h - \
h- - -

% Bug Reports

% Report all bugs to Prof. Phillip De Leon (pdeleon@nmsu.edu)
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% Set initial parameters

T = 2048; % Basic block length

beta = 0.5; 7% Overlapping factor

K = 6; % The total number of superblocks
alfa = 1.0; % Normalized step size

L = 100; % Number of iteratioms

Q = [500; 2048]; % Multistage parameters

% Real-world mixtures

mixl = ’c:\nchen\research\mrfd\altinl.wav’; mix2 =
’c:\nchen\research\mrfd\altin2.wav’;

% The directory used to save the separated signals
out = ’c:\nchen\research\mrfd\out\final_mrfd\altin\’;
% Read mixtures into vectors

[xt1,Fs]=wavread(mix1); [xt2,Fs]l=wavread(mix2);

— - - S
% Determine the parameters: N, U, and M

N = min(length(xt1), length(xt2)); % Signal length in samples

N = floor(N/T)+*T;

xtl = xt1(1:N); xt2 = xt2(1:N); % Truncate signal to int. number of blocks

U = floor(N/(betaxT)-1); % Number of blocks
M = floor(U/K); % Number of blocks in each superblock
e — — -

% Initialize Hamming window
t = [0:T-1]’; w = 0.54 - 0.46%cos(2*pi*t/(T-1));

Y m e e e e e e e
% Short-Time Fourier Transform
xwl = zeros(T,1); xw2 = zeros(T,1);

x1 = zeros(T,N/(beta*T)); x2 =zeros(T,N/(betax*T));

form = 1:U
block = beta*T*(m~1);
xwl = w.*xt1(block+1:block+T);
xw2 = w.*xt2(block+1:block+T) ;% The column vector of windowed mixtures
x1(:,m) = £fft(xwl); % x1, x2 are (T * MK) matrices with column vector...
x2(:,m) = fft(xw2); % as the FFT of each block
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end;

h

% Initializing the un-mixing filter matrices

W = zeros(2,2,T); W(1,1,:) =1; W(1,2,:) = 0; W(2,1,:) = 0;

W(2,2,:) = 1; , ‘

% Four un-mixing filter vectors

Wil = zeros(T,1); Wi2 = Wii; W21 = Wii; W22 = Wil; Y1 =

zeros(T,1); Y2 = zeros(T,1);

h- - T - e
% - ' ~=%
%h MULTISTAGE ITERATION %

for q = 1:1length(Q)
% Compute the covariance :
Rx=zeros(2,2,T/2+1,K); % only calculate Rx on omega=1:T/2+1 due to symmetry
“for k = 1:K
block = M*(k-1);
Rx(1,1,:,k) = sum(x1(1:T/2+1,block+[1:M]).* ...
conj (x1(1:T/2+1,block+[1:M])),2)./M;

Rx(1,2,:,k) = sum(x1(1:T/2+1,block+[1:M]).* .
conj (x2(1:T/2+1,block+[1:M]1)),2)./M;
Rx(2,1,:,k) = conj(Rx(1,2,:,k)); %Hermitian property of the PSD matrices

Rx(2,2,:,k) = sum(x2(1:T/2+1,block+[1:M]).* ..
conj (x2(1:T/2+1,block+[1:M]1)),2)./M;
end;

% Average power of the mixtures at each frequency
Mu = zeros(T/2+1,1);
for omega = 1:T/2+1

Fronorm = O;

for k=1:K .
Fronorm = Fronorm + norm(Rx(:,:,omega,k),’fro’)."2; %Frobenius-norm
end; .
Mu(omega) = alfa/Fronorm; % Step size
end;

% Reinitializing the un-mixing filter matrices at each stage
Ws = zeros(2,2,T);
Ws(1,1,:) =1; Ws(1,2,:) = 0; Ws(2,1,:) = 0; Ws(2,2,:) = 1;

for 1 = 1:L % Iteration for L times
for omega = 1:T/2+1 % Seek W(omega) at every frequency bin
Gradt = zeros(2,2);% Initializing Gradient
for k = 1:K
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V= Ws(:,:,omega)*Rx(:,:,omega,k)*Ws(:,:,omega)’;
V =V - diag(diag(V)); %cost function
Gradt = Gradt + V#Ws(:,:,omega)*Rx(:,:,omega,k);
end;
Gradt = 2 * (Gradt-diag(diag(Gradt))); % Gradient
Ws(:,:,omega) = Ws(:,:,omega) - Mu(omega)*Gradt; % Update
end;
%/ Apply the symmetric constraint
Ws(:,:,T/242:T) = conj(Ws(:,:,T/2:-1:2));
%% Truncation of W(omega) in time-domain
Wll=reshape(Ws(1,1,:),T,1); Wi2=reshape(Ws(1,2,:),T,1);
W21=reshape (Ws(2,1,:),T,1); W22=reshape(Ws(2,2,:),T,1);
Wil=ifft(W11); Wi12=ifft(W12); W21=ifft(W21); W22=ifft(W22); % to TD
Wil=fft (W11(1:Q(q)),T); W12=fft(W12(1:Q(q)),T); % to frequency domain
W21=££t(W21(1:Q(q)),T); W22=fft(W22(1:Q(q)),T);
Ws(1,1,:)=W11; Ws(1,2,:)=W12; Ws(2,1,:)=W21; Ws(2,2,:)=W22;
end; % End of L iteratiomns

% Current Stage Separation
for m = 1:U
Y1 = Wil.*x1(:,m) + Wi2.*x2(:,m);
Y2 = W21.*x1(:,m) + W22.*x2(:,m);
x1(:,m) = Y1;
x2(:,m) = Y2;
end;
% Update the overall un-mixing filter matrices
for omega = 1:T
W(:,:,omega) = Ws(:,:,omega) * W(:,:,omega);

end;
end;
Wh END of MULTISTAGE ITERATION Y%
e T T o == - =%
hmmmmmm oo -- --%

R et LTS - - -

% Inverse Fourier Transform and synthesize separated signals by Overlap-adding
block = betasT; yyl = zeros(T,1); yy2 = yyi; y1 = yy1; y2 = yyi;
for m = 1:U

yyl = real(ifft(x1(:,m)));

yy2 = real(ifft(x2(:,m)));

L1 = length(yl);

L2 = length(y2);

y1 = [y1(1:Li-block);y1(L1-block+1:L1)+yy1(1:block);yyl(block+1:T)];
y2 = [y2(1:L1-block);y2(L1-block+1:L1)+yy2(1:block) ;yy2(block+1:T)];
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end; e.= 10°(-7); A
vyl = y1./(max(abs(y1))+e); y2 = y2./(max(abs(y2))+e); % Normalize

h—- - _ —
% Save separated signals ,
wavwrite(yl,Fs,strcat(out,’altin_T’ ,num2str(T),’_1.wav’));
wavwrite(y2,Fs,strcat(out,’altin_T’ ,num2str(T),’_2.wav’));

mrfdSIM203.m

S ———— S S —
% CO-CHANNEL CONVOLUTIVE MIXING & UN-MIXING (MRFD) SIMULATOR

%

4 This MATLAB code simulates the convolutive mixing process using the simulated
% impulse responses generated by the "image method" [1] and implements the
% blind speech separation algorithm of MRFD by Ikram and Morgan [2]. The

- % problem is as follows. Given two source signals, sl and s2, and four mixing
% filters simulated by the "image method", we generate the mixtures x1 and x2
% by x_i = s_i*h_ij + s_j*h_ij, where "x" is the linear convolution operator.
% Then we implement MRFD based on the statistics collected from the x1 and x2
% and produce separated speech signals, yl and y2 such that y1 = si, y2 ~ s2.
% Finally, we determine the Signal-to-Noise-Ratio Improvement (SIRI).
%
% [1] J. B. Allen and D. A. Berkley, "Image Method for efficiently simulating
% small-room acoustics", J, Acoust. Soc. Am., 65(4):943--950, 1979.
%

% [2] M. Ikram and D. Morgan, "A multiresolution Approach to Blind Separation

% of Speech Signals in A Reverberant Environment", In Proc. IEEE ICASSP,

o Pages 2757-2760, 2001.
% - -

% Notes

% 1. This MATLAB implements the modified version of the algorithm in [1] as

% given in Table. 3 in this thesis, and measures the average SIRI

% performance for the selection of optimal parameters and analysis of

% MRFD under various reverberant environment.

v .

% 2. All signals stored as column vectors.

%

% : - , —

% Version History

%

% 2.03 (Oct. 10, 01) Cleaned up mess and added comments.

h

% 2.02 (Sep. 10, 01) Added the second measurement of SIRI, which could be used

>

o1




h when the mixing filters were unknown.

/

% 2.01 (Sep. 01, 01) Rewrote the main code to be able to measure the average
% SIRI of num_sour pairs of mixtures with the source

h speeches randomly selected from TIMIT.

/

% 2.00 (Aug. 06, 01) Changed the mixing filters by the simulated impulse

% responses of real room generated through the image method
% in [3]

A

% 1.02 (Jul. 22, 01) Changed the mixing filters by the impulse responses given
% at: Prof. De Leon’s BSS website:

% http://wuw.ece.nmsu.edu/ pdeleon/BSS/index.html.

% Truncated those impulse responses to the first T samples.

0/' ‘
% 1.01 (Feb. 28, 01) Added the calculation of Signal to Interference Ratios

% Improvement(SIRI), the impulse responses were offered by Prof. De Leon,
% with direct-channel response hii from the speaker i to the telephone

A transmitter i, and cross-channel response hij (i“=j) from speaker j

% to telephone i over the phone line, we truncated the impulse responses
% to get the first T samples.

%

% 1.00 (Jan. 30, 01) First version based on the code mrfd_real.m version 1.0.
Y m e e e e _—

% Required routines: At least one of

% siri_rho.m (determine SIRI with varying reflection coefficients),

% siri_rms.m (determine SIRI with varying room size),

% imag_filt.m (simulate the room impulse response by image method),
% sroom.m (simulate the room impulse response by image method),

% lthimage.m (simulate the room impulse response by image method),
%4 siri_measl.m (measure SIRI with known sources and mixing filters),

% siri_meas2.m (measure SIRI without known sources and mixing filters),

l/. __________ s . o e e . S S S S . e e e S S . s

clear; close all; clc;

O - — S O
% Initializing parameters

num_sour = 20; 7 Number of random pairs for average SIRI measurement

rho = 0,1:0.1:1.0; % Analysis of MRFD for various reflection coefficients

% rho = 0.3 J Fixing rho when analyzing other parameters

T = 2048,;

ha = [4:2:30]°; 7 Analysis of varying room size [a, a, a/2]

% -———- ot e e e e e e e e e e

% Set work directory
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database‘= ‘c:\nchen\TIMIT’; % Location of TIMIT database
func_path = ‘c:\nchen\research\mrfd\reflect’;

out_fig = ‘C:\nchen\research\mrfd\reflect\ana_reflect.fig’;
path = path(path,func_path); % Add function path into Matlab search path

h - = - -

% Get TIMIT database directory structure

eval(strcat(‘cd(‘‘‘, database, ’’’)’));

- inpath =-dir; % Get the "dir" structure

n=size(inpath); :

inpath = inpath(3:n(1)); %cut the first two elements, which are "." and ".."

% . - : -
% Determine average SIRI
SIRI = zeros(length(rho),1);
for i = 1:num_sour % Determine the SIRI for each pair of mixture

samps = ceil(600.*rand(1,2));

path = inpath(samps); /% Randomly choose 2 speech signals

for j = 1:length(rho) Y

SIR = siri_rho(path(1).name, path(2).name, rho(j));

% RL = [a(j); a(j); a(j)/2]; % Room dimension
% SIR = siri_rms(path(1).name, path(2).name, RL); % SIRI performance with
SIRI(j) = SIRI(j) + SIR; % varying room size
end; :
end;
SIRI = SIRI./num_sour; % Average SIRI

'/. ;
% Plot SIRI versus varying reflection coefficients

figure; plot(rho,SIRI); xlabel (’Reflection Coefficient \rho?’);
ylabel (?SIRI (dB)’); grid; saveas(gcf,out_fig);

siri_rho.m

function SIRI = siri_rho(sourcel, source2, rho);
QISIRI PERFORMANCE ANALYSER (For varying reflection coefficients)
é This MATLAB code implements the MRFD under various reverberant environment
% by varying reflection coefficients in the "image method" simulation.

Q Call Syntax: SIRI = siri_rho(sourcel, source2, rho)

v
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% INPUT arguments:

% Name: sourcel/2

% Type: string

% Description: File name of source speech signal (.wav)

% Name: rho
4 Type: scalar
% Description: Reflection Coefficient

% OUTPUT arguments:

% Name: SIRI '

% Type: scalar

% Description: Signal-to-Interference Ratio Improvement

% Creation Date: Aug. 06, 2001
4 Last Revision: Sept. 10, 2001

0/. . . S0 e T . S " e A . o S o e S S 2 . o e o e e o s i 2 e e e

% e - - memm e -

% Set initial parameters

T = 2048; J, Basic block length

beta = 0.5; % Overlapping factor

K = 6; % The total number of superblocks
alfa = 1.0; % Normalized step size

L = 100; Y% Number of iterations

Q = [500; 2048]; % Multistage parameters

0/' - S — o o _— o S 4 Yo D S i S S P i S e S, . D . T B - ———

% Simultate Mixing filters
[h11,h12,h21,h22] = imag_filt(rho); H11 = fft(h11l); Hi12 =
fft(hi12); H21 = fft(h21); H22 = fft(h22);

% Source Signals
[st1,f1] = wavread(sourcel); [st2,f2] = wavread(source2);

e e e e e e e e - -
% Determine the parameters: N, U, and M

N = min(length(xt1), length(xt2)); % Signal length in samples

N = floor(N/T)*T; _
stl = st1(1:N); st2 = st2(1:N); % Truncate signal to int. number of blocks
U = floor(N/(beta*T)-1); % Number of blocks

M = floor(U/K); % Number of blocks in each superblock

P —— ———————— - —— e
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% Initialize Hamming window »
t = [0:T-1]’; w = 0.54 - 0.46%cos(2¥pixt/(T-1));

% : e

% Short-Time Fourier Transform and Mixing Process by Circular Convolution

swi= zeros(T,1); sw2= zeros(T,1);
s1 = zeros(T,U); s2 = zeros(T,U);

x1 = zeros(T,U); x2 = zeros(T,U); pack;
for m = 1:U

block = beta*T*(m-1);
swl = w.*st1(block+1:block+T); A
sw2 = w.*st2(block+1:block+T);% The column vector of windowed source signals

si(:,m) = fft(swl); % s1, s2 are (T * MK) matrics with column vector...
s2(:,m) = fft(sw2); % as the FFT of each block
x1(:,m) = H11.#s1(:,m) + H12.%s2(:,m); % Mixing process by circular
x2(:,m) = H21.*s1(:,m) + H22.*s2(:,m); % convolution

end; : :

h %

% % Mixing Process by Linear Convolution and Shoft—Time Fourier Transform

% xtl = conv(stl,hl1l) + conv(st2,h12);
% xt2 = conv(stl,h21) + conv(st2,h22); ) Mixing process by linear convolution
% xt1 = xt1(1:N); xt2 = xt2(1:N);

%
% % Short-Time Fourier Transform
% swl = zeros(T,1); sw2 = zeros(T,1);
% xwl = zeros(T,1); xw2 = zeros(T,1);
% s1 = zeros(T,num_blk); s2 = zeros(T,num_blk);
% x1 = zeros(T,num_blk); x2 = zeros(T,num_blk);
% pack;
% for m = 1:num_blk
% block = beta*T*(m-1);
Y ‘
% swl = w.*sti(block+1:block+T); % The column vector of windowed source
% sw2 = w.*st2(block+1:block+T); % signals
% si(:,m) = fft(swl); % si1, s2 are (T * MK) matrics with column vector...
% s2(:,m) = £fft(sw2); % as the FFT of each block
%
% xwl = w.*xt1(block+1:block+T); 7% The column vector of windowed mixed
% xw2 = w.*xt2(block+1:block+T); % signals
KA x1(:,m) = fft(xw1); % x1, x2 are (T * MK) matrics with column vector...
% x2(:,m) = fft(xw2); Y% as the FFT of each block

]
]
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% end;

Y mmm e e e e - ——— —_—

% Initializing the un-mixing filter matrices

W = zeros(2,2,T); W(1,1,:) = 1; W(1,2,:) = 0; W(2,1,:) = 0;
W(2,2,:) = 1;

% Four un-mixing filter vectors

Wil = zeros(T,1); Wi2 = Wil; W21 = Wi1l; W22 = Wii;

Y1 = zeros(T,1); Y2 = zeros(T,1);

% : Tmmmmmmmmmmm—mms e — '/-
" %
ol MULTISTAGE ITERATION Wh

for q = 1:length(Q)
% Compute the covariance :
Rx=zeros(2,2,T/2+1,K); % only calculate Rx on omega=1:T/2+1 due to symmetry
for k = 1:K
block = Mx(k-1);
Rx(1,1,:,k) = sum(x1(1:T/2+1,block+[1:M]).* ...
conj (x1(1:T/2+1,block+[1:M]1)),2)./M;
Rx(1,2,:,k) = sum(x1(1:T/2+1,block+[1:M]).* .
conj(x2(1:T/2+1,block+[1:M])),2)./M;
Rx(2,1,:,k) = conj(Rx(1,2,:,k)); %Hermitian property of the PSD matrices
Rx(2,2,:,k) = sum(x2(1:T/2+1,block+[1:M]).* .
conj(x2(1:T/2+1,block+[1:M])),2) ./M;
end;

% Average power of the mixtures at each frequency
Mu = zeros(T/2+1,1);
for omega = 1:T/2+1

Fronorm = O;

for k=1:K
Fronorm = Fronorm + norm(Rx(:,:,omega,k),’fro’)."2; %Frobenius-norm
end;
Mu(omega) = alfa/Fronorm; % Step size
end;

% Reinitializing the un-mixing filter matrices at each stage
Ws = zeros(2,2,T);
Ws(1,1,:) = 1; Ws(1,2,:) = 0; Ws(2,i,:) = 0; Ws(2,2,:) = 1;

for 1 = 1:L /4 Iteration for L times
for omega = 1:T/2+1 % Seek W(omega) at every frequency bin

Gradt = zeros(2,2);% Initializing Gradient
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for k = 1:K
V = Ws(:,:,omega)*Rx(:,:,omega,k)*Ws(:,:,omega)’;
V =V - diag(diag(V)); Y%cost function
Gradt = Gradt + VxWs(:,:,omega)*Rx(:,:,omega,k);
end;
Gradt = 2 * (Gradt-diag(diag(Gradt))); % Gradient
Ws(:,:,omega) = Ws(:,:,omega) - Mu(omega)*Gradt; % Update
end;
%% Apply the symmetric constraint
Ws(:,:,T/2+2:T) = conj(Ws(:,:,T/2:-1:2));
%% Truncation of W(omega) in time-domain
Wil=reshape(Ws(1,1,:),T,1); Wi2=reshape(Ws(1,2,:),T,1);
W21=reshape(Ws(241,:):T,i); W22=reshape (Ws(2,2,:),T,1);
Wit=ifft (W11); Wi2=ifft(W12); W21=ifft(W21); W22=ifft(w22); % to TD
Wil=fft(W11(1:Q(q)),T); Wi2=fft(W12(1:Q(q)),T); % to frequency domain
W21=fft (W21 (1:Q(q)),T); W22=fft(W22(1:Q(q)),T);
Ws(1,1,:)=W11; Ws(1,2,:)=W12; Ws(2,1,:)=W21; Ws(2,2,:)=W22;
end; % End of L iterations

% Current Stage Separation
form = 1:U

Y1 = Wil.*x1(:,m) + Wi2.*x2(:,m);

Y2 = W21.*x1(:,m) + W22.*x2(:,m);

x1(:,m) = Yi;

x2(:,m) = Y2;
end;
% Update the overall un-mixing filter matrices
for omega = 1:T

W(:,:,omega) = Ws(:,:,omega) * W(:,:,omega);

end;
énd; ,
Wh END of MULTISTAGE ITERATION YA
A %
t %

% The mixing filter
H = zeros(2,2,T); H(1,1,:) = H11; H(1,2,:) = H12; H(2,1,:) = H21;
H(2,2,:) = H22;

%

% % Determine SIRI by the first measurement of SIRI with known sources and
% % mixing filters
% SIRI = siri_measi(T,U,s1,s2,H,W);




mmmmmmmm e m — ——
% Determine SIRI by the second measurement of SIRI without known sources and
% mixing filters

Y- - e e e e e o
Y% The contribution when one source is "on", the other is "off"

xt11l = conv(stl,h11); xt21 = conv(sti,h21); % Contribution of source 1

xt12 = conv(st2,h12); xt22 = conv(st2,h22); % Contribution of source 2
xt11 = xt11(1:N); xt21 = xt21(1:N); % Contribution of source 1
xt12 = xt12(1:N); =xt22 = xt22(1:N); % Contribution of source 2

% Short-Time Fourier Transform
xwil = zeros(T,1); xwl2 = zeros(T,1); %
xw21 = zeros(T,1); xw22 = zeros(T,1); %
x11 = zeros(T,num_blk); x12 = zeros(T,num_blk); %
x21 = zeros(T,num_blk); x22 = zeros(T,num_blk); %
pack; %
for m = 1:num_blk
block = beta*T*(m-1);

xwil = w .* xt11(block+1i:block+T);%
xwl2 = w .* xt12(block+1:block+T);%
xw2i = w .* xt21(block+1:block+T);%
xw22 = w .* xt22(block+1:block+T);% The column vectors of windowed mixtures

x11(:,m) = £ft(xwil); %

x12(:,m) = £ft(xwi2); % '
x21(:,m) = fft(xw21); % x11, x12, x21, x22 are (T * MK) matrics with column
x22(:,m) = fft(xw22); % vector as the FFT of each block

end;

%
% Convert x_ij into one matrix
x(:,:,1) = x11; x(:,:,2) = x12; x(:,:,3) = x21; x(:,:,4) = x22;

SIRI = siri_meas2(T,U,x,W);

imag_filt.m

function [h11,h12,h21,h22] = imag_filt(rho)
h .
% ROOM IMPULSE RESPONSE SIMULATOR
®,
/)

% This MATLAB code simulates the acoustic impulse responses in a small room.
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% Call Syntax: [h11,h12,h21,h22] = imag filt(rho)

% INPUT arguments:

% Name: rho

% Type: scalar

" % Description: Reflection coefficient

% OUTPUT arguments:

% Name: h_ij

% Type: vector

% Description: Impulse.response from source j to microphone i

% AUTHORS: Ning Chen, Dr. De Leon
% Version: 1.0

% Creation Date: Jul. 31, 2001

% Last Revision:

% References:

%
% Set initial parameters

NPTS = 2048; T = 1/16000; C = 344;

unit = 0.3048; % feet -> meter convert unit

h
% Vector radius to receiver in smaple preiods
Rri = [2.23 ; 2.74; 1.68]./(T*C); %

Rr2 = [2.83 ; 2.74; 1.68]./(TxC);

% Vector radius to source in smaple preiods
Rsi = [2.13 ; 0.91; 1.52]./(T*C); %
Rs2 = [3.35 ; 0.91; 1.52]./(T=C);

% Vector of box dimensions in smaple periods
RL = [5.06; 3.41; 2.44]./(T*C);

%
% Vector of six wall reflection coefs
BETA = [rho, rho, rho; rho, rho, rhol;

h
% % Case 2: when rho is fixed to 0.3 and room size is varying
% x = RL(1);

% % Vector radius to receiver in smaple preiods
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[x/2-1; x/2+1; 1.7]./(T*C);
[x/2+1; x/2+1; 1.7]./(T*C);

% Rri
% Rr2
/)

% % Vector radius to source in smaple preiods

% Rsi = [x/2-1; x/2-1; 1.5]./(TxC);

% Rs2 = [x/2+1; x/2-1; 1.5]./(T*C);

h

% % Vector of box dimensions in smaple periods

% RL = RL./(T*C); % RL as a parameter with unit of ’m’
h

% % Vector of six wall reflection coefs

%“ BETA = [.3,.3,.3; .8,.3,.3];

% —
hi11 = sroom(Rsi,Rrl,RL,BETA,NPTS); %

h12 = sroom(Rs2,Rr1,RL,BETA,NPTS); %
h21 = sroom(Rs1,Rr2,RL,BETA,NPTS); %
h22 = sroom(Rs2,Rr2,RL,BETA,NPTS);

=
% Normalization

hil = hii./max(abs(hi1)); hi12 = h12./max(abs(hi2)); %
h21 = h21i./max(abs(h21)); h22 h22. /max(abs (h22));

o,
h
% %Plot of mixing-filter impulse responses
%t = 1:NPTS;

%subplot(2,2,1); plot(t,hil,’r’);
%subplot(2,2,2); plot(t,h12,’g’);
%subplot(2,2,3); plot(t,h21,’b’);
%subplot(2,2,4); plot(t,h22,°k’);

sroom.m

function HT = sroom(Rr,Rs,RL,BETA,NPTS)
9]k ok sk sk ok Ak ok oK ok oo 3o A o Kk sk K oK sk sk Kk sk sk Rk lR sk ok ook sk Rk ok ok K

% Subroutine to calculate a room impulse response.

h

% Input Arguments:

% Name: Rr

% Type: 3x1 real vector

% Description: Vector radius to receiver in smaple preiods = length/(C*T)
h

% Name: Rs
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% Type: 3%1 real vector

% Description: Vector radius to source in smaple preiods = length/(C*T)
%

% Name: RL

% Type: 3%1 real vector

% Description: Vector of box dimensions in smaple preiods = length/(CxT)
" )

% Name: BETA

% Type: 61 real vector

% Description: Vector of six wall reflection coefs (O < BETA < 1)
%

% Name: NPTS

% Type: integer number

% Description: Number of points of HT to be computed

YA

% Output Arguments:

%  Name: HT

~ % Type: vector

% Description: Impulse Response

%

% AUTHORS: Ning Chen, Dr. De Leon

% Version: 1.0

% Creation Date: Jul. 31, 2001

% Last Revision:

% References: .
T—————————— PR TR R PR LIRS L L L SRS

% Set initial parameters
HT = zeros(NPTS,1); NR = zeros(3,1);

DELP = zeros(8,1);%Vector of eight source to image distances in sample periods
PERM=[-1-1-1-1 1 1 1 1;...

-1-1 1 1-1-1

11

PERM2 = sign(PERM+1);

dis = norm(Rr-Rs); %

if dis < .5
HT(1) = 1;
return,;
end;
N1 = floor(NPTS/(RL(1)*2))+1; % Range of sum

N2 = £loor (NPTS/(RL(2)*2))+1; %
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N3 = floor(NPTS/(RL(3)*2))+1;

for NX = -N1:Ni
for NY = -N2:N2
for NZ -N3:N3
= [NX;NY;NZ];
DELP LTHIMAGE(Rr,Rs,RL,NR PERM);
for i = 1:8
ID = round(DELP(i));
FDM1 = ID;
ID =1ID + 1;
if ID > NPTS
break;
end;
/A
GID = BETA(1,:)’. abs(NR-PERM2(:,i)).*BETA(2,:)’."abs(NR);
GID = GID(1)*GID(2)*GID(3)/FDM1;
HT(ID) = HT(ID) + GID;
end;
end;
end;
end;

% Filter with Hi Pass filter of 1% of sampling freq (i.e. 100Hz)

W = 2.%4 *atan(1.)*100.; %
T = .0001; %
Ri= exp(-WxT); R2= Ri; %
Bi= 2.*Ri*cos(W*T); B2= -R1°2;
Al= -(1.+R2); A2= R2; %

Yi= 0; Y2= 0; YO= 0

for i = 1:NPTS % Filter HT

X0 = HT(i);

HT(1i) = YO + Al1xY1 + A2%Y2;
Y2 = Y1i;

Y1l = YO;

YO = B1%Y1 + B2%Y2 + XO0;

end;

lthimage.m

function DELP = LTHIMAGE(DRr,DRs,RL,NR,PERM)
O sk ok sk ke ok ok ke ok sk ok s s sk o ok ok sk ok ksl s ok ok sk ok o ks o o s s ek ok o ek ksl sk s s oo s sk s sk s s ok sk ko o ke ke ok

% Subroutine to calculate a room impulse response.
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%

% Input Arguments:

% Name: DRr

% Type: 3%1 real vector

% Description: Vector radius to receiver in smaple preiods = length/(C+*T)
h

% Name: DRs

% Type: 3%1 real vector

% Description: Vector radius to source in smaple preiods = length/(C*T)
h

% Name: RL

% Type: 3#1 real vector :

% Description: Vector.of box dimensions in smaple preiods = length/(C*T)
%

% Name: NR

% Type: 3%1 real vector

% Description: Vector of mean image number

%

%4 Output Arguments:

% Name: DELP ‘

% Type: 8+%1 real vector

% Description: Vector of 8 source to images distances in smaple periods
%

% AUTHORS: Ning Chen, Dr. De Leon

% Version: 1.0

% Creation Date: Jul. 31, 2001

% Last Revision:

% References:
'/.*******************************************************************

for i = 1:8
RP(:,i) = DRr + PERM(:,i).*DRs;
end;

R2L = 2«RL.*NR; for i = 1:8
R1 = R2L - RP(:,i);
DELP(i) = norm(R1);

end;

siri.measl.m

function SIRI = siri_measi(T, U, si, s2, H, W);

o,
%
% SIRI MEASUREMENT 1 (With known sources and mixing filters)
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%

% This MATLAB code determine the SIRI with known sources and mixing filters.
%

% Call Syntax: SIRI = siri_meas1(T,U,s1,s2,H,W)

YA

% INPUT arguments:

% Name: T

% Type: scalar

% Description: Block length

h

% Name: U

% Type: scalar .

% Description: Number of blocks

h

% INPUT arguments:

% Name: s1/2

% Type: T#U matrix

, Description: Short-Time Fourier represemntative of source signals
h

% Name: H

% Type: 2%2*T matrix

% Description: Mixing filter matrix

%

% Name: W

% Type: 2*2*T matrix

% Description: Un-mixing filter matrix

%

% OUTPUT arguments:

% Name: SIRI

% Type: scalar

% Description: Signal-to-Interference Ratio Improvement
h

% Creation Date: Aug. 06, 2001

% Last Revision: Sept. 10, 2001

l/. -—

™~

%

% The system overall filter
A=zeros(2,2,T); for omega = 1:T

A(:,:,omega) = W(:,:,omega) * H(:,:,omega);
end;

%
% Power of the filters



Ali=abs(reshape(A(1,1,:),T,1)).72;
A12=abs(reshape(A(1,2,:),T,1))."2;

A21=abs(reshape(A(2,1,:),T,1))."2;

A22=abs(reshape(A(2,2,:),T,1))."2; %
HH11=abs(H11)."2; HH12=abs(H12).°2;%
HH21=abs(H21) ."2; HH22=abs(H22)."2;

h

% SNRI
num = 0; numl = O; denl = 0; den = 0; %
form = 1:0

sfl = abs(si(:,m))."2; sf2

numi= numl + sum(HH11.*sfi) + sum(HH22.*sf2);

deni= denl + sum(HH12.*sf2) + sum(HH21.x*sf1);

num = num + sum(All.*sfl) + sum(A22.*sf2);

den = den + sum(A21.#*sfl) + sum(A12.*sf2);
end;

abs(s2(:,m))."2;

+ + H

SIRi = 10*loglO(numi/deni); % Input SIR
SIRo = 10xloglO(num/den); % Output SIR
SIRI = SIRo - SIRi; % SIR Improvement

. 8tri_meas2.m

function SIRI = siri_meas2(T, U, x, W);
é SIRI MEASUREMENT 2 (Without known sources and mixing filters)

é This MATLAB code determine the SIRI without known sources and mixing filters.
é Call Syntax: SIRI = siri_meas2(T,U,W)

% INPUT arguments:

% Name: T

% Type: scalar

% Description: Block length

% Name: U
% Type: scalar

% Description: Number of blocks

% Name: x
% Type: T*Ux4 matrix
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% Description: Short-Time Fourier representative of mixed signals

% Name: W
% Type: 2*2*T matrix
% Description: Un-mixing filter matrix

% OUTPUT arguments:
% Name: SIRI

% Type: scalar

% Description: Signal-to-Interference Ratio Improvement

% Creation Date: Aug. 06, 2001
% Last Revision: Sept. 10, 2001

./. - e

% Un-mixing filters

Wil = reshape(W(i,1,:),T,1); W12 = reshape(W(1,2,:),T,1); %
W21 = reshape(W(2,1,:),T,1); W22 = reshape(W(2,2,:),T,1);
Y -
% SNRI
numi = 0; denl = 0; num=0; den=0;
form = 1:U
aumi= numi + sum(abs(x(:,m,1))."2) + sum(abs(x(:,m,4))."2); %i Calculate...
deni= denl + sum(abs(x(:,m,2)).~2) + sum(abs(x(:,m,3)).72); %4 SIRi
pum = num + sum(abs(Wil.*x(:,m,1)+W12.*x(:,m,3)).72) + ...
sum(abs (W21.*x(:,m,2)+W22.*x(:,m,4))."2);
den = den + sum(abs(Wii.*x(:,m,2)+W12.*x(:,m,4))."2) + ...
sum(abs (W21.*x(:,m,1)+W22.*x(:,m,3))."2);
end;
SIRi = 10%loglO(numi/den1); % Signal to Interference Ratio of the input
SIRo = 10*loglO(num/den); Y% Signal to Interference Ratio of the output
SIRI = SIRo - SIRi; % SIR Improvement
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Appendix C - C Simulation Codes

speech.c

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
*

CO-CHANNEL CONVOLUTIVE MIXED SPEECH SEPARATOR

This C code implements the blind speech separation algorithm of Ikram

and Morgan [1]. The problem is as follows. Given two signals, x1 and

X2 each containing a convolutive mixture of two source speech signals, sl and
s2 produce separated speech signals, yl and y2 such that yl1 = si1, y2 ~ s2.
This is a blind separation problem since we only have x1 and x2 and no

other additional information. The approach assumes the uncorrelatedness
between the original source signals. We then attempt to diagonalize the
estimated Power Spectral Demsity (PSD) matrices at multiple time segments to
decorrelate the mixtures in frequency-domain (av01d1ng the deconvolution in
time-domain) to achieve the separation.

SYNTAX

From command line: ./speech <filel> <file2>

Where <fileX> are the files containing the the two mixtures.

NOTES

1) This version of the code is NOT optimized for performance, it is written
now for readability and mathematical correctness. The reader may notice
lines of code that do something that will not change the numerical value
of whats being calculated but it is what would happen if you carried out
the matrix calculation. These lines of code can easily be removed for
performance at a later time but are left in to account for correctness.

2) Everything that deals with the vectors WXX_final can be removed for
performance increase, the values are calulated purely for end user
information,

3) The code currently accepts input of ASCII files only, this is for ease of
use. The input and output values can easily and quickly be evaluated.
For performance later, switching to binary inputs may be desired. A
program such as Matlab can be used to take and put back the ASCII files
into .wav formats.

4) There are portions of the code that will need to be modified for a
real-time implementation as we will only have blocks of samples to work on
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6)

7

8)

and not the entire signal. Control mechanisms will will need to be added
as well to control what block is being operated on and what block is
being filled with new samples.

Output will be stored in output_sourcel.txt and output_source2.txt. These
can be modified as desired.

The only variable that needs to be changed from mixture to mixture is
SIGNAL_LENGTH unless other parameters want to be changed, i.e the number of
stages or the iterations.

The code is fairly straight forward if you have a copy of the Matlab
version as well, so it is recommended that the reader review the Matlab
verson of the code as it is easier to understand.

This code was developed on a Linux box running the 2.4.x kernel using libs
from glibc-2.2.4. It was compiled using gcc-2.96. It adheres to ANSI
standard so it should be easily portable.

REFERENCES

[1] M. Ikram and D. Morgan, "A multiresolution Approach to Blind Separation of

Speech Signals in A Reverberant Environment", In Proc. IEEE ICASSP, Pages
2757-2760, 2001.

[2] L. Parra and C. Spence, "Convolutive Blind Separation of Non-Stationary

Sources", IEEE Transactions on Speech and Audio Processing, 8(3):320-327,
May 2000. '

VERSIONS

****************************************

1.2.1 (12/18/01) Last minute comment changes.

1.2.0 (12/17/01) Code now matches latest algorithm implementation and is

working.

Add normalization of output vectors.
Cleanup variables and memory allocatioms.
Lots of commenting.

1.1.0 (12/01/01) Start merge to final version of algorithm using the final

Matlab code as a blueprint.

Put the 2 stages of the multistage iteration into a for loop.
Change how Frobenius norm is calculated.

Apply Hermitian property to Rx calculations.
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1.0.1 (11/28/01)

1.0.0 (11/18/01)

0.9.8 (11/18/01)

0.9.7 (11/11/01)

0.9.6 (10/22/01)

(09/28/01)

0.9.4 (07/14/01)
0.9.3 (07/03/01)
0.9.2 (06/19/01)

0.9.1 (06/18/01)

0.9.0 (06/17/01)

Cleanup code a little.

Working code. Still missing normalization code, but is not
that important.

Output samples match Matlab output to the 15/16 digit after
normalization in Matlab.

Make a dissmal attempt at normalization code.
Finish stage 2 of multistage iteration.

Add code to rebuild the ouﬁput vectors from blocks.

Finish code to calculate cost function.

Finish code to calculate gradient.

Add code to calculate seperation matrix.

Add code to apply the symmetric constraint on the seperation
matrix.

Add truncation of seperation matrix in time-domain.

Finish stage 1 of multistage iteration.

Add code to calculate Frobenius norm.

Start addition of code to calculate cost function.

Start addition of code to calculate gradient.

Add covariance calculation code.

Improved implementation of Short Time Fourier block of code.

Add Short Time Fourier Tramsform block of code.

Link in complex math code(fft, ifft) and their dependencies.
Construct hamming window calculation.

Initial code, setup up 1/0, and command line parameters.

CONTACT

Bug Reports

Report all bugs to Prof. Phillip De Leon (pdeleon@nmsu.edu)

LR I O AR N B R BN B S I K B R JEE CBEE BEE JEE JEE R CBEE R R R CEEE T T N N R R IR B T R I IR
o
©
(2]

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
#include "cmplx.h"
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void fft();
void ifft(Q);

int main(int argc, char *argv(])

{

FILE *input_filel, *input_file2;
FILE *output_filel, *output_file2;

/* Set initial parameters */

const double PI = 3.1415926535897932; /* Value of pi

const double BETA = 0.5; /* Overlapping factor

const double ALPHA = 1; /* Normalized step size

const double E = 0.0000001; /* Offset used in normalization

const int SIGNAL_LENGTH = 409600; /* Signal length in samples

const int BLOCK_LENGTH = 2048; /* Basic block length

const int ITERATIONS = 100; /* Number of iterationms

const int NUMBER_SUPERBLOCKS = 6; /* The total number of superblocks
const int NUM_FILTER_STAGES = 2; /* Multistage parameters

/* Half the value of block length, avoids doing multiple divides */
const int HALF_BLOCK_LENGTH = (BLOCK_LENGTH / 2);

/* Number of blocks */

const int NUMBER_BLOCKS = floor(SIGNAL_LENGTH / (BETA * BLOCK_LENGTH) - 1);

/* Number of blocks in each superblock */
const int NUMBER_BLOCKS_IN_SUPERBLOCK =
floor (NUMBER_BLOCKS / NUMBER_SUPERBLOCKS) ;
/* Length of output signal */
const int OUTPUT_SIGNAL_LENGTH = (SIGNAL_LENGTH + (BLOCK_LENGTH -
(BETA * BLOCK_LENGTH)));
/* Calculate once to avoid many divides later */
const double INV_NUMBER_BLOCKS_IN_SUPERBLOCK =
(1 / (double)NUMBER_BLOCKS_IN_SUPERBLOCK) ;

int i = 0; /* Bogus variable for loops

int j = 0; /* Bogus variable for loops

int k = 0; /* Bogus variable for loops

int w = 0; /* Little omega

int q = 0; /* Current iteration of stage

int xx_index = 0; /* Initialize index for xx vectors

int xw_index = 0; /* Initialize index for xw vectors

int conjugate_index = 0; /* Initialize index for symmetric constraint
* calculation *x/

int block = 0; /* Initialize block number

int y_counter = 0; /* Initialize counter for y vectors
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int yy_counter = 0; /* Initialize counter for yy vectors */
int L1 = 2048; /* The length of yl and y2, used in reassembling the blocks */

int Q2] = {500, 2048}; /* q values for multistage iteration */
double max_sample_value_1 = 0; /* Maximum value of sample, used in

* normalization x/
double max_sample_value_2 = 0; /* Maximum value of sample, used in

* normalization */ '

/* Initialization for "double" vectors (All pointers) */
double *omega;

double *xti;

double *xt2;

/* Initialization for "complex" values */

complex fronorm = cmplx(0.0,0.0);

complex gradtil; complex gradtl2; complex gradt2l; complex gradt22;
complex V1i1l; complex V12; complex V21; complex V22;

/* Initialization for "complex" vectors (All pointers)*/
complex *mu;

complex *xwl; complex *xw2;

complex *xx11; complex *xx12; complex *xx21; complex *xx22;

/* Pointer to a pointer for RxXX*/

complex **Rx11l; complex **Rx12; complex **Rx21; complex **Rx22;
complex *Ws_11; complex *Ws_12; complex *Ws_21; complex *Ws_22;
complex *W11l; complex *W12; complex *W21; complex *W22;

complex *W1i1l_temp; complex *W12_temp; complex *W21_temp; complex *W22_temp;
complex *W1l_final; complex *W12_final;

complex *W21_final; complex *W22_final;

complex *Y1; complex *Y2;

complex *yyl; complex *yy2;

complex *yl; complex *y2;

complex *x1[BLOCK_LENGTH]; /#* Static array in one dimension, dynamic in
* other */ ' | -

complex *x2[BLOCK_LENGTH]; /* Static array in one dimension, dynamic in
* other */ :

/* Check to see if we have the correct number of
arguments from command line at startup */

if (arge != 3) {
fprintf(stderr, "Syntax: speech [filel] [file2]\n");
exit(8); '

} .

/* Open our input files */ _

if ((input_filel = fopen(argv[i], "r")) == NULL) {
fprintf(stderr, "speech: Cannot open %s\n", argv[i]);
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exit(8);
}
if ((input_file2 = fopen(argv[2], "r")) == NULL) {
fprintf(stderr, "speech: Cannot open %s\n", argv[2]);
exit(8);
}
/* Reserve memory spaces for vectors omega, xtil, xt2, xwl, xw2, and Ws_XX */
if ((omega = calloc((BLOCK_LENGTH), sizeof(double))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}
if ((xtl = calloc(SIGNAL_LENGTH, sizeof(double)))
fprintf(stderr, "Out of memory\n");
exit(8);
3
if ((xt2 = calloc(SIGNAL_LENGTH, sizeof(double))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}
if ((xwl = calloc(BLOCK_LENGTH, sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}
if ((xw2 = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {

fprintf(stderr, "Out of memory\n");

= NULL) {

exit(8);

X

if ((Ws_11 = malloc(BLOCK_LENGTH * sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}

if ((Ws_12 = malloc(BLOCK_LENGTH * sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}

if ((Ws_21 = malloc(BLOCK_LENGTH * sizeof (complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
exit(8);

} .

if ((Ws_22 = malloc(BLOCK_LENGTH * sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}

/* The four callocs below can be removed for performance,

* is purely for user information */
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if ((Wii_final = calloc(BLOCK_LENGTH, sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

} :
if ((W12_final = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}

if ((W21_final = calloc(BLOCK_LENGTH, sizeof(complex)))
fprintf(stderr, "Out of memory\n");
exit(8);

} - . .
if ((W22_final = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
exit(8);

}

NULL) {

for (i = 0; i < BLOCK_LENGTH; i++) { /*This can be removed for performance,*/

Wil_final[i]l = cmplx(1.0,0.0); /* is purely for user information */
Wi2_final[i] = cmplx(0.0,0.0); /* Initialize the vectors that */
W21_final[i] = cmplx(0.0,0.0); /* store the final seperation matrix =*/
W22_final[i] = cmplx(1.0,0.0); /* */

3

/* Create storage space for a BLOCK_LENGTH * NUMBER_BLOCKS
*atrix of matrices for x1 and x2 */
- for(i = 0; i < BLOCK_LENGTH; i++) {

if ((x1[i] = calloc(NUMBER_BLOCKS, sizeof(complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
exit(8);

}

if ((x2[i] = calloc(NUMBER_BLOCKS, sizeof(complex)))
fprintf(stderr, "Out of memory\n");

= NULL) {

exit(8);
}

}

/* Read mixtures into vectors */

i=0;

while ((fscanf(input_filel, "J1f", &xt1[i]l)) &&

(fscanf (input_file2, "%1f", &xt2[i])) != EOF) {

it++;

}

/* Close input files */
fclose(input_filel);

73



fclose(input_file2);

fprintf (stderr,"Starting Stages\n");
/* - — x/
/* Hamming window calculations */
for(i = 0; i < BLOCK_LENGTH; i++) {
omegali] = 0.54 - 0.46 * cos(2 * PI * i / (BLOCK_LENGTH - 1));
}
/* - =%/
/* Short-Time Fourier Transform */
for(i = 0; i < NUMBER_BLOCKS; i++) {
block = (BETA * BLOCK_LENGTH * i); /* Calculate what block we are on */
xw_index = 0;
for(j = block; j < (block + BLOCK_LENGTH); j++) {
/* The column vector of windowed mixtures (channel 1) */
xwi[xw_index] = cmplx(omegal[xw_index] * xt1[j],0);
/* The column vector of windowed mixtures (Channel 2) */
xw2[xv_index] = cmplx(omega[xw_index] * xt2[j1,0);
xw_index++;
}
fft (BLOCK_LENGTH, xwl); /* Fast Fourier Transform */
fft (BLOCK_LENGTH, xw2); /* Fast Fourier Transform */
/* Store FFT values in a T x NUMBER_BLOCKS matrix */
for(k = 0; k < BLOCK_LENGTH; k++) {
/* Store calculated xwl into our BLOCK_LENGTH*NUMBER_ BLOCKS matrix */
x1[k] [i] = xwi[k];
/* Store calculated xw2 into our BLOCK_LENGTH*NUMBER_BLOCKS matrix */
x2[k] [i] = xw2[k];

)

/* Cleanup any storage we don’t need anymore */
free(xt1); free(xt2); free(omega); free(xwl); free(xw2);

/% - ===/
/% MULTISTAGE ITERATION x/
/* */

for (g = 0; q < NUM_FILTER_STAGES; q++) {
fprintf(stderr,"Entering Stage %\n", qQ);
/* Allocate space for RxXX vectors */

if ((Rx11l = calloc(NUMBER_SUPERBLOCKS, sizeof(complex *))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

} :

if ((Rx12 = calloc(NUMBER_SUPERBLOCKS, sizeof (complex *))) == NULL) {

fprintf(stderr, "Out of memory\n");
exit(8);
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}

if ((Rx21 = calloc(NUMBER_SUPERBLOCKS, sizeof(complex *))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}

if ((Rx22 = calloc(NUMBER_SUPERBLOCKS, sizeof (complex *)))
fprintf(stderr, "Out of memory\n"); :
exit(8);

it
]

NULL) {

}
for(i = 0; i < NUMBER_SUPERBLOCKS; i++) {
/* Allocate space for xxXX vectors */
if ((xx11 = calloc(HALF_BLOCK_LENGTH + 1, sizeof(complex))) == NULL){
fprintf (stderr, "Out of memory\n");
exit(8);
} ; ‘
if ((xx12 = calloc(HALF_BLOCK_LENGTH + 1, sizeof(complex)))
fprintf(stderr, "Out of memory\n");
exit(8);
} ,
if ((xx21 = calloc(HALF_BLOCK_LENGTH + 1, sizeof(complex)))
fprintf(stderr, "Out of memory\n");
exit(8); :
}
if ((xx22 = calloc(HALF_BLOCK_LENGTH + 1, sizeof(complex))) == NULL){
fprintf(stderr, "Out of memory\n");
exit(8);
} .
for(j = 0; j < NUMBER_BLOCKS_IN_SUPERBLOCK; j++) {
/* Calculate where we are in the super block */
xx_index = (NUMBER_BLOCKS_IN_SUPERBLOCK * i) + j;
/*Computation of covariancex/
for(k = 0; k < (HALF_BLOCK_LENGTH + 1); k++) {

= NULL)A{

= NULL){

; xx11[k] = cadd(xx11[k], (cmul(x1[k] [xx_index],
- - (conjg(x1[k] [xx_index])))));
!, xx12[k] = cadd(xx12[k], (cmul(x1[k] [xx_index],
(conjg(x2[k] [xx_index]1)))));
xx21[k] = conjg(xx12[k]); /* Hermitian property of '

* PSD matrices */
xx22[k] = cadd(xx22[k], (cmul (x2[k] [xx_index],
: (conjg(x2[k] [xx_index1)))));

}

/* Multiply all the values in xx vectors
* by 1 / NUMBER_BLOCKS_IN_SUPERBLOCK */
for(k = 0; k < (HALF_BLOCK_LENGTH + 1); k++) {
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xx11(k] = cmul(xxii[k],cmplx(INV_NUMBER_BLDCKS-IN_SUPERBLOCK,0));

xx12[k] = cmul(xx12[k],cmplx(INV_NUMBER_BLDCKS_IN_SUPERBLDCK,0));

xx21[k] = cmul(xx21{k],cmplx(INV_NUMBER_BLDCKS_IN_SUPERBLOCK,0));

xx22[k] = cmul(xx22[k],cmplx(INV_NUMBER_BLDCKS_IN_SUPERBLOCK,0));
X

/* Save the xx vectors calculated above, NUMBER_SUPERBLOCKS of them
* should be stored */

Rx11[i] = xx11;
Rx12[i] = xx12;
Rx21[i] = xx21;
Rx22[i] = xx22;
}
/* Allocate space for seperation matrix */

if ((Wi1 = calloc(BLOCK_LENGTH, sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");

exit(8);

} .

if ((Wi2 = calloc(BLOCK_LENCTH, sizeof (complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
exit(8);

}

if ((W21 = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}

if ((W22 = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {

fprintf (stderr, "Out of memory\n") ;
exit(8);

if ((mu = malloc((HALF_BLOCK_LENGTH + 1) * sizeof (complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
exit(8);
}
/* Average power of the mixtures at each frequency x/
for (j = 0; j < (HALF_BLOCK_LENGTH + 1); j ++) {
/* Initialize Frobenius norm to zero for each stage */
fronorm = cmplx(0.0,0.0);
/* Calculate the Frobenius norm */
/* Rx11°2 + Rx12°2 + Rx21°2 + Rx2272 */
for (k = 0; k < NUMBER_SUPERBLOCKS; k++) {
fronorm = cadd(fronorm,
cadd (cmul ( (* (Rx11+k)) [j], conjg((*(Rx11+k)) [j1)),
cadd (cmul ( (*(Rx12+k)) [j],conjg((*(Rx12+k)) [31)),
cadd (cmul ( (* (Rx21+k) ) [§], conjg((*(Rx21+k)) [31)),
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cmul ((*(Rx22+k)) [j],conjg((*(Rx22+k)) [J1))I))));

}

/* Divide the step size ALPHA by the calculated Frobenius norm

* (normalize)*/

mulj] = cdiv(cmplx(ALPHA,0.0),fronorm);
}
/* Reinitializing the un-mixing filter matrices at each stage */
/* Initialize un-mixing filter matrices to identiy matrix */

for(j = 0; j < BLOCK_LENGTH; j++) {
Ws_11[j] = cmplx(1.0,0.0);
Ws_12[j] = cmplx(0.0,0.0);
Ws_21[j] = cmplx(0.0,0.0);
Ws_22[j] = cmplx(1.0,0.0);

}

for(j = 0; j < ITERATIONS; j++) { /* Iterations for ITERATIONS times */
/* Seek W(omega) at every frequency bin */
for (w = 0; w < (HALF_BLOCK_LENGTH + 1); w++) {

gradtil = cmplx(0.0,0.0); /# ’ */
gradt12 = cmplx(0.0,0.0); /* Initialize Gradient to zero */
gradt21 = cmplx(0.0,0.0); /* */
gradt22 = cmplx(0.0,0.0); /* */
for(k = 0; k < NUMBER_SUPERBLOCKS; k++) {
Vil = cadd(cmul(conjg(Ws_11[w]),cadd(cmul(Ws_11[w],
(*(Rx11+k)) [w]),cmul (Ws_12[w], (*(Rx21+k)) [¥]))),
cmul(conjg(Ws_12[w]),cadd(cmul (Ws_11[w]l,
(* (Rx12+k)) [W]) , cmul (Ws_12[w] , (*(Rx22+k)) [W]))));
V12 = cadd(cmul(conjg(Ws_21[w]),cadd(cmul (Ws_11[w],
(*(Rx11+k)) [w]),cmul (Ws_12[w], (*(Rx21+k)) [w]))),
cmul (conjg(Ws_22[w]) ,cadd(cmul(Ws_11[w],
(*(Rx12+k)) [w]) ,cmul (Ws_12[w], (*(Rx22+k)) w1))));
V21 = cadd(cmul(conjg(Ws_11[w]),cadd(cmul (Ws_21(w],
(*(Rx11+k)) [w]) ,cmul (Ws_22[w], (*(Rx21+k)) [w]))),
cmul (conjg(Ws_12[w]) ,cadd(cmul (Ws_21[w],
(*(Rx12+k)) [w]) ,cmul (Ws_22[w] , (* (Rx22+k) ) w1))) )
V22 = cadd(cmul(conjg(Ws_21[w]),cadd(cmul(Ws_21[w],
(*(Rx11+k)) [w]) ,cmul (Ws_22[w], (*(Rx21+k)) 1)),
cmul (conjg(Ws_22[w]),cadd(cmul (Ws_21[w],
. (*(Rx12+k)) [w]) , cmul (Ws_22[w] , (*(Rx22+k)) [w]))));
Vi1l = csub(V11,V11); /* */
Vi2 = csub(V12,cmplx(0.0,0.0)); /* Cost functlon *x/
V21 = csub(V21,cmplx(0.0,0.0)); /* (can be made much more */
V22 = csub(V22,V22); /* effiecient) */

gradtil = cadd(gradtil,cadd(cmul((*(Rx11+k)) [w],
cadd(cmul(V1i1,Ws_11[w]),cmul(V1i2,Ws_21[w]1))),
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cmul ( (*(Rx21+k)) [w] ,cadd (cmul (V11,Ws_12[w]),
cmul (V12,Ws_22[w]1)))));
cadd(gradt12, cadd(cmul ((*(Rx12+k)) [v],
cadd(cmul (Vi1,Ws_11[w]),cmul(V12,Ws_21[w]))),
cmul ( (*(Rx22+k)) [w] ,cadd (cmul (V11,Ws_12[w]),
_ cmul (V12,Ws_22[w1)))));
cadd(gradt21,cadd(cmul ((*(Rx11+k)) [v],
cadd (cmul(V21,Ws_11[w]),cmul(V22,Ws_21[w]))),
cmul ( (* (Rx21+k)) [w], cadd(cmul (V21,Ws_12[w]),
cmul (V22,Ws_22[w1)))));
cadd(gradt22,cadd(cmul ( (*(Rx12+k)) [w],
: . cadd(cmul(V21,Ws_11[w]),cmul(V22,Ws_21[w]))),
cmul ( (*(Rx22+k)) [w] , cadd (cmul (V21,Ws_12[w]),
cmul (V22,Ws_22[w1)))));

f

gradt12

gradt21

gradt22

}

/* Gradient (can be made more efficient) */

gradtil cmul (cmplx(2.0,0.0),csub(gradt1l,gradtil));
gradt12 cmul (cmplx(2.0,0.0) , csub(gradti2, cmplx(0.0,0.0)));
gradt2l = cmul(cmplx(2.0,0.0),csub(gradt21,cmplx(0.0,0.0)));
gradt22 = cmul (cmplx(2.0,0.0) , csub(gradt22,gradt22));

Ws_11[w] = csub(Ws_11[w],cmul (mulw],gradtil)); /* */

Ws_12[w] = csub(Ws_12[w],cmul(mu[w],,gradt12)); /* Update */

Ws_21[w] = csub(Ws_21[w],cmul (mulw],gradt21)); /* */

Ws_22[w] = csub(Ws_22[w],cmul (mulw],gradt22)); /* */
}

/* Apply Symmetric constraint */
conjugate_index = 0;
for(i = HALF_BLOCK_LENGTH + 1; i < BLOCK_LENGTH; i++) {

Ws_11[i] = conjg(Ws_11[HALF_BLOCK_LENGTH - conjugate_index - 11);
Ws_12[i] = conjg(Ws_12[HALF_BLOCK_LENGTH - conjugate_index - 11);
Ws_21[i] = conjg(Ws_21 [HALF_BLOCK_LENGTH - conjugate_index - 11);
Ws_22[i] = conjg(Ws_22[HALF_BLOCK_LENGTH - conjugate_index - 1]);
conjugate_index++; '

}

/* Truncation of W(omega) in time-domain */
for (i = 0; i < BLOCK_LENGTH; i++) {

wi1[i] = Ws_11[i];

Wi2[i] = Ws_12[i];

W21[i] = Ws_21[i]l;

w22[i] = Ws_22[i];
}
ifft(BLOCK_LENGTH,W11); /* */
ifft (BLOCK_LENGTH,W12); /* Transfer to time domain */
ifft (BLOCK_LENGTH,W21); /* */
ifft (BLOCK_LENGTH,W22); /* */
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/* Needed to zero pad the q length block with BLOCK_LENGTH-q zeros */
if ((Wil_temp = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}
if ((Wi2_temp = calloc(BLOCK_LENGTH, sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

}
if ((W21_temp = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {

fprintf(stderr, "Out of memory\n")
exit(8);
}
if ((W22_temp = calloc(BLOCK_LENGTH, 51zeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}

/* Copy the first Q[q] samples over to the temporary vectors */
for(i = 0; i < Qlql; i++) {

Wil_temp[i] = W11[il;
Wi2_temp[i] = Wi12[i];
W21_temp[i] = W21[i];
w22_temp[i] = W22[i];
}
fft (BLOCK_LENGTH, Wil_temp); /* */
fft(BLOCK_LENGTH, W12_temp); /* Transfer back to frequency domain */
f£t(BLOCK_LENGTH, W21_temp); /* . */
fft (BLOCK_LENGTH, W22_temp); /* ' ’ */
for (i = 0; i < BLOCK_LENGTH; i++) {
Ws_11[i] = Wil_temp[i]; /* */
Ws_12[i] = Wi2_temp[i]; /* Save values to be used again in */
Ws_21[i] = W21_temp[i]; /* next stage. */
Ws_22[i] = W22_temp([i]; /* ’ */

}

} ,
/* End of ITERATIONS iterations %/

/* Allocate space */

if ((Y1 = calloc(BLOCK_LENGTH, sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
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}
if ((Y2 = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
- exit(8);-
3
/* Current Stage Seperation */
for (i = 0; i < NUMBER_BLOCKS; i++) {
for(j = 0; j < BLOCK_LENGTH; j++) {
/* Multiply the current seperation matrix by input signals */
Y1[j] = cadd(cmul(Ws_11[j],x1[j]1[i]),cmul(Ws_12(j],x2[j]1[i1));
/* Multiply the current seperation matrix by imput signals */
Y2[jl = cadd(cmul (Ws_21[j],x1[j1 [i]),ecmul(Ws_22[j],x2(j]1[i1));
x1[j1[i] = Y1[j]l; /* Save seperated signal for next stage */
x2[j1[i] = Y2[j]; /* Save seperated signal for next stage */
}
}

/* Update the overall un-mixing filter matrices (This can be removed for
* performance, it is purely user information)*/
for (i = 0; i < BLOCK_LENGTH; i++) {
Wi1l_finalli] = cadd(cmul(Ws_11[i],wW11_final[il),
cmul (Ws_12[1],W21_final[il));
cadd(cmul (Ws_11[i],W12_final[il),
cmul (Ws_12[i],W22_final[il));
cadd(cmul (Ws_21[i],W11_£final[il),
cmul (Ws_22[1] ,W21_final([il));
cadd(cmul (Ws_21[i],W12_final[il),
cmul (Ws_22[i],W22_final[il));

Wi2_finall[i]

Ww21_finall[i]

W22_final[i]

3

/* Cleanup all the storage vectors that are no longer needed */
free(xx11l); free(xx12); free(xx21); free(xx22);
free(Rxi11); free(Rx12); free(Rx21); free(Rx22);
free(Wil); free(W12); free(W21); free(W22);
free(Wi1_temp); free(Wi2_temp); free(W21_temp); free(W22_temp);
free(Y1); free(Y2);
free(mu);
fprintf (stderr, "Leaving Stage %d\n", q);
}

fprintf(stderr, "Finished Stages\n");
fprintf (stderr, "Seperation Complete\n");

/%
/* END of MULTISTAGE ITERATION */

/*
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/* Allocate space */

if ((Y1 = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n"); '
exit(8);

if ((Y2 = calloc(BLOCK_LENGTH, sizeof(complex)))
fprintf(stderr, "Out of memory\n");
exit(8);

NULL) {

if ((yyl = calloc(BLOCK_LENGTH, sizeof (complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);

if ((yy2 = calloc(BLOCK_LENGTH, sizeof(complex))) == NULL) {
fprintf (stderr, "Out of memory\n");
exit(8);

}

/* Create storage space for final output signals, yl and y2 */

if ((y1 = calloc((SIGNAL_LENGTH + BLOCK_LENGTH), sizeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}
if ((y2 = calloc((SIGNAL_LENGTH + BLOCK_LENGTH), sizeof(complex))) == NULL) {
fprintf(stderr, "Out of memory\n");
exit(8);
}
fprintf(stderr, "Rebuilding Output Vector\n");
/* */
/* REBUILD OUTPUT VECTORS */
/* *x/

/* Inverse Fourier Transform and synthesize the separated signals */
block = BETA * BLOCK_LENGTH;
for (i = 0; i < NUMBER_BLOCKS; i++) {
for(j = 0; j < BLOCK_LENGTH; j++) {
/*Retrieve seperated signals from final stage */
yy1[j]l = x1[j]l [yy_counter]; '
/*Retrieve seperated signals from final stage */
yy2[j]1 = x2[j] [yy_counter];
} .
yy_counter++;
ifft (BLOCK_LENGTH, yyi); /* Inverse Fourier Transform */
ifft (BLOCK_LENGTH, yy2); /* Inverse Fourier Transform */
for(j = 0; j < BLOCK_LENGTH; j++) {
/* Pull out the real part of yyl, but keep in complex
* form with O for imaginary part */
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yy1[jl = cmplx(real(yy1(;1),0);
/* Pull out the real part of yy2, but keep in complex

* form with O for imaginary part */
yy2[j] = cmplx(real(yy2(jl),0);
}

for(j = (L1 - block ); j < L1; j++) {
/* First part of reconstructed block */
y1[j]l = cadd(y1[jl,yyily_counter]);
/* First part of reconstructed block */
y2[j] = cadd(y2[jl,yy2[y_counter]);
" y_countert+;
} .
for(j = L1; j < (L1 + HALF_BLOCK_LENGTH); j++) {
y1[j] = yyily_counter]; /+* Second part of reconstructed block */
y2(j] = yy2[y_counter]; /* Second part of reconstructed block */
y_counter+t; :
}
L1 = L1 + HALF_BLOCK_LENGTH;
y_counter = 0;

}

fprintf (stderr, "Normalizing\n");

/% ~x/

/* NORMALIZATION */

/* - */

/* Normalization code, this will need to be modified for real-time
*implementation */

/+ Find the largest sample out of each signal */
for (i = 0; i < (SIGNAL_LENGTH + BLOCK_LENGTH); i++) {

if (fabs(real(y1[i])) > max_sample_value_1) {

}

max_sample_value_1 = fabs(real(y1[il));

if (fabs(real(y2[il)) > max_sample_value_2) {

}

max_sample_value_2 = fabs(real(y2[il));

}

/% Do one divide to avoid many divides, and add in an offset */
max_sample_value_1 = 1 / (max_sample_value_ 1l + E);
max_sample_value_2 = 1 / (max_sample_value_2 + E);

/* Normalize */

for (i = 0; i < (SIGNAL_LENGTH + BLOCK_LENGTH); i++) {

yi[il.x = yilil.x * max_sample_value_1;
y2[il.x = y2[il.x * max_sample_value_2;

}
/% === */
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/* Open our output files */

if ((output_filel = fopen("output_sourcel.txt", "w")) == NULL) {
fprintf(stderr, "Output file 1 cannot be opened");
exit(8);
}
if ((output_file2 = fopen("output_source2.txt", "w")) == NULL) {
fprintf (stderr, "Output file 2 cannot be opened"); ‘
exit(8);
}
: /* Save separated signals */
% for(i = 0; i < OUTPUT_SIGNAL_LENGTH; i++) {
' fprintf (output_filel, "%0.16f\n", y1[i].x);
fprintf (output_file2, "%0.16f\n", y2[i].x);
}
/* Close our output files */
fclose(output_filel);
fclose(output_file2);
/* Final cleanup before we exit */
for(i = 0; i < NUMBER_BLOCKS; i++) {
free(x1[il);
free(x2[il);
}
free(yl); free(y2);
free(yyl); free(yy2);
free(Y1); free(Y2);
return(0);
} ,
complex.c
/* complex.c - complex arithmetic functions */
#include <math.h> /* for MSC and TC/BC, it declares: */

/* \ttt{struct complex} and
* \ttt{cabs()} */
struct complex {double x, y;}; /* uncomment if not MSC or TC/BC */

/* uncomment if not MS or TC/BC */
// double cabs(z)
// complex z;

/7 A

/- return sqrt(z.x * 2.x + 2.y * z.y);
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// '}

typedef struct complex complex;

complex cmplx(x, y)
double x, y;
{

complex z;

return z;

}

complex conjg(z)
complex Zz;

{

return cmplx(z.x, -z.y);

}

complex cadd(a, b)
complex a, b;
{

return cmplx(a.x

}

complex csub(a, b)
complex a, b;
{

return cmplx(a.x

3

complex cmul(a, b)
complex a, b;
{

return cmplx(a.x

}

complex rmul(a, z)
double a;
complex Zz;

{

return cmplx(a *

/* z = cmplx(x,y) = x+jy */

complex conjugate of z=x+jy*/

/*

returns z* = x-jy */

/* complex addition */
+ b.x, a.y + b.y);

/* complex subtraction */
- b.x, a.y - b.y);

/* complex multiplication */
* b.x - a.y * b.y, a.x * b.y + a.y * b.x);

/* multiplication by real */

Z.X, a * 2.y);
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3

complex cdiv(a, b) ‘ /

*
complex a, b;
{

double D = b.x * b.x + b.y * b.y;

return cmplx((a.x * b.x + a.y * b.y) / D, (a.y *
} .

complex rdiv(z, a) /*
complex z;
double a;
{
return cmplx(z.x / a, z.y / a);

}

double real(z) o . %
complex Zz; :

{

return z.X;

}

double aimag(z) ‘ /*
complex z;

{

return z.y;

}

complex cexp(z) /*
complex Z;

{
double R = exp(z.x);

return cmplx(R * cos(z.y), R * sin(z.y));

complex division */

b.x - a.x * b.y) / D);

division by real */

real part Re(z) */

imaginary part Im(z) */

complex exponential */

fft.c

-/* fft.c -- 1in-place decimation-in-time FFT */

#include "cmplx.h"

void shuffle(), dftmerge();




void fft(N, X)
complex *X;
int N;

{

shuffle(N, X);
dftmerge(N, X);

shuffle.c

/* shuffle.c - in-place shuffling (bit-reversal) of a complex array */
#include "cmplx.h"

void swap();
int bitrev();

void shuffle(N, X)

complex *X;
int N; /* \(N\) must be a power of 2 */
{
int n, r, B=1;
while ( (N >>B) > 0) /* \(B\) = number of bits */
B++;
B--; /* \(N = 2\sp{B}\) */
for (n = 0; n < N; n++) {
r = bitrev(n, B); /* bit-reversed version of \(n\) */
if (r < n) continue; /* swap only half of the \(n\)s */
swap(X+n, X+r); /* swap by addresses */
}
}
dftmerge.c

/* dftmerge.c - DFT merging for radix 2 decimation-in-time FFT */

-

#include "cmplx.h"
void dftmerge(N, XF)
complex *XF;

int N;
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double pi = 4. * atan(1.0);
int k, i, p, q, M;
complex A, B, V, W;

M= 2;
‘ while (M <= N) { | /* tuo \((M/2)\)-DFTs into one
| . * \(M\)-DFT */ ‘
- W = cexp(cmplx(0.0, -2 * pi / M)); /* order-\(M\) twiddle factor */
l V = cmplx(1., 0.); /* successive powers of \(W\) */
for (k = 0; k < M/2; k++) { /% index for an \((M/2)\)-DFT */
for (i = 0; i <N;id+= M) { /* \(i\)th butterfly; increment
‘ o * by \(M\) =/
p=k+i; /* absolute indices for */
q=p+M/2; /* \(i\)th butterfly */
A = XF[p]; : ,
B = cmul(XF[ql, V); /% \(V = W\sp{k}\) */
XF[p] = cadd(A, B); . /% butterfly operations */
XF[q] = csub(A, B);
}
V= cmul(V, W); /* \(V = VW = W\sp{k+1}\) */
}
M=2%x*N; /* next stage */
}
}
swap.c
/* swap.c -- swap two complex numbers (by their addresses) */

#include "cmplx.h"

void swap(a,b)
complex *a, *b;

{ |
complex t;
t = *a;
*a = *b;
*b = t;

}

bitrev.c

/* bitrev.c - bit reverse of a B-bit integer n */
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#define two(x) (1 << (x))

int bitrev(n, B)
int n, B;
{

int m, I;

for (r=0, m=B-1; m>=0; m--)
if ((@ > m) ==1) {

r += two(B-1-m);

two(m) ;

/*\ (2\sp{x}\) by left-shifting*/

/* if \(2\sp{m}\) term is
* present, then */

/* add \(2\sp{B-1-m}\) to
* \(r\), and */

n -= /* subtract \(2\sp{m}\)
* from \(n\) */
}
return(r);
}
ifft.c

/* ifft.c - inverse FFT */
#include "cmplx.h"
void fft(Q);
void ifft(N, X)
complex *X;
int N;
{ ‘
int k;

for (k=0; k<N; k++)
X[k] = conjg(X[k]);

£t (N, X);

for (k=0; k<N; k++)

X[k] = rdiv(conjg(X[k]), (double)N);

/* conjugate input */

/* compute FFT of conjugate */

/* conjugate and divide by
* \(N\) =/

cmplz.h



/* cmplx.h - complex arithmetic declarations */

#include <math.h> /* in MSC and TC/BC, it declarares: */
’ /* \ttt{struct complex} and
' ' * \ttt{cabs(z)} */

struct complex{dbuble X, :}; /* uncomment if neccessary */
double cabs(struct complex); /* uncomment if neccesary */

typedef struct complex complex;

complex cmplx(double, double); /* define complex number */
complex conjg(complex);. /* complex conjugate */
complex cadd(complex, complex); ‘ /* complex addition */
complex csub(complex, complex); /* complex subtraction */
complex cmul(complex, complex); /* complex multiplication */
complex cdiv(complex, complex); /* complex division */
complex rmul(double, complex); /* multiplication by real */
complex rdiv(complex, double); /* division by real */
double real(complex); /* real part */

double aimag(complex); /* imaginary part */

complex cexp(complex); /* complex exponential */




List of Symbols, Abbreviations, and Acronyms

AH  — Complex-conjugate transpose

AT  — Transpose

A* - Complex conjugate

— Correction matrix

- Discrete Fourier transform matrix

— Projection matrix

Mixing filter matrix

- Room impulse response from source i to microphone j
Expectation operator

~ Superblock index

~  Number of superblocks

—~  Number of adaptive iterations

~ Block index

— Number of blocks in each superblock
-~ Discrete time index

— Length of input signal in sample

~ Mixing filter length

- Permutation matrix

- Stage index

Un-mixing filter length

— Correlation, covariance matrix of x
- Vector of sources

—~ Number of multistages

~ Block length

— Matrix transpose operator

— Number of blocks

— Cross-power spectral density matrix
— Un-mixing filter matrix

it* component of vector, x

—  Vector of mixtures

Vector of separated signals

- Diagonal matrix with Z; =1 fori < Q and Z;; =0 for ¢ > Q
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Off(-) - Off Diagonal matrix

* — convolution operator
- — estimate
||]|2 - Squared Frobenius norm
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J¢; - Window overlap factor

i — Normalized step size

p - Reflectivity coefficient

w — Discrete frequency index

ASR . - Automatic Speech Recognition

BSS — Blind Source (or Speech) Separation
CPSD - CrossPower Spectral Density

dB ~ Decibel

DIT — Decimation.in Time

DFT — Discrete Fourier Transform

DSP - Digital Signal Processing (or Processor)
FDADF - FrequencyDomain Adaptive Decorrelation Filtering
FDSOS - FrequencyDomain, Second Order Statistics
FFT — Fast Fourier Transform

LDC — Linguistics Data Consortium

LSI - — Linear, Shift-Invariant

MRFD - Multiresolution Frequency Domain

PSD — Power Spectral Density

SIR — Signal-to-Interference Ratio

SIRI — Signal-to-Interference Ratio Improvement
SIR; — Input Signal-to-Interference Ratio

SIR, — OQutput Signal-to-Interference Ratio

SNR — SignaltoNoise Ratio

SNRI - SignaltoNoise Ratio Improvement

STFT - Short-Time Fourier Transform

TIMIT - Texas Instruments, Massachusetts Institute of Technology
WGN — White Gaussian Noise
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